Wind Damage >> Hurricane Protection Techniques

 For other basic wind speeds, or for an importance factor of 1, multiply the tabulated number of #12 screws by to determine the required number of #12 screws or (¼ pan-head screws) required for the desired basic wind speed, VD (mph) and Hurricane Protection Techniques importance factor, I.4. 

For other roof heights up to 200', multiply the tabulated number of #12 screws by (1.00 + 0.003 [h - 30]) to determine Hurricane Protection Techniques the required number of #12 screws or ¼ pan-head screws for buildings between 30' and 200'.

Example A: 24" x 24" exhaust fan screwed to curb (table row 7), Base Case conditions (see Note 1): 2.5 screws per side; therefore, Hurricane Protection Techniques round up and specify 3 screws per side.Example B: 24" x 24" exhaust fan screwed to curb (table row 7).

Base Case conditions, except 120 mph and importance factor of 1: 1202 x 1 902 x 1.15 = 1.55 x 2.5 screws per side = 3.86 screws per side; Hurricane Protection Techniques therefore, round up and specify 4 screws per side.Example C: 24" x 24" exhaust fan screwed to curb (table row 7).

Base Case conditions, except 150' roof height: 1.00 + 0.003 (150' - 30') = 1.00 + 0.36 = 1.36 x 2.5 screws per side = 3.4 screws per side; therefore, Hurricane Protection Techniques round down and specify 3 screws per side.* This factor only applies to the long sides. At the short sides, use the fastener spacing used at the long sides. 

Fan Cowling Attachment: Fans are frequently blown off their curbs because they are poorly attached. When fans are well attached, Hurricane Protection Techniques the cowlings frequently blow off (see Figure 3). Unless the fan manufacturer specifically engineered the cowling attachment to resist the design wind load, cable tie-downs (see Figure 4) are recommended to avoid cowling blow-off. 

For fan cowlings less than 4 feet in diameter, 1/8-inch diameter stainless steel cables are recommended. Figure 3 caption. Cowlings blew off two of the three fans shown in this photo. Cowlings can tear roof membranes and break glazing. [end of caption] Figure 4 caption. To overcome blow-off of the fan cowling, Hurricane Protection Techniques this cowling was attached to the curb with cables.  

For larger cowlings, use 3/16-inch diameter cables. When the basic wind speed is 120 mph or less, specify two cables. Where the basic wind speed is greater than 120 mph, Hurricane Protection Techniques specify four cables. To minimize leakage potential at the anchor point, it is recommended that the cables be adequately anchored to the equipment curb (rather than anchored to the roof deck). 

The attachment of the curb itself also needs to be designed and specified. Ductwork: To avoid wind and windborne debris damage to rooftop ductwork, Hurricane Protection Techniques it is recommended that ductwork not be installed on the roof (see Figure 5). If ductwork is installed on the roof, it is recommended that the gauge of the ducts and their attachment be sufficient to resist the design wind loads. 

Figure 5 caption. Two large openings remained (circled area and inset to the right) after the ductwork on this Hurricane Protection Techniques roof blew away. [end of caption] Condensers: In lieu of placing rooftop-mounted condensers on wood sleepers resting on the roof (see Figure 6), it is recommended that condensers be anchored to equipment stands. 

(Note: the attachment of the stand to the roof deck also needs to be designed to resist the design loads.) In addition to anchoring the base of the condenser to the stand, Hurricane Protection Techniques two metal straps with two side-by-side #14 screws or bolts at each strap end are recommended (see Figure 7). Figure 6 caption. Sleeper-mounted condensers displaced by high winds.  

Figure 7 caption. This condenser had supplemental securement straps (see arrows). Two side-by-side screws with the proper edge and Hurricane Protection Techniques end distances are recommended at the end of the strap. [end of caption] Vibration Isolators: 

When equipment is mounted on vibration isolators, an isolator that has sufficient resistance to meet the design uplift loads should be specified and installed, or Hurricane Protection Techniques an alternative means to accommodate uplift resistance should be provided (see Figure 8). Figure 8 caption. 

The equipment on this stand was resting on vibration isolators that provided lateral resistance Hurricane Protection Techniques but no uplift resistance (above). A damaged vibration isolator is shown in the inset (left). [end of caption] Access Panel Attachment: Access panels frequently blow off. 

To minimize blow-off of access panels, job-site modification will typically be necessary (for example, the attachment of hasps and locking devices such as a carabiner). The modification details will need to be tailored for the equipment, Hurricane Protection Techniques which may necessitate detail design after the equipment has been delivered to the job site. 

Modification details should be approved by the equipment manufacturer. Equipment Screens: Equipment screens around rooftop equipment are frequently blown away (see Figure 9). Equipment screens should be designed to resist the wind loads derived from ASCE 7. Note: The extent that screens may reduce or Hurricane Protection Techniques increase wind loads on equipment is unknown. 

Therefore, Hurricane Protection Techniques the equipment behind screens should be designed to resist the loads previously noted. Figure 9 caption. Several of the equipment screen panels were blown away. Loose panels can break glazing and puncture roof membranes. 

Other resources: Three publications pertaining to seismic restraint of equipment provide general information on fasteners and Hurricane Protection Techniques edge distances: • Installing Seismic Restraints for Mechanical Equipment (FEMA 412) • Installing Seismic Restraints for Electrical Equipment (FEMA 413)• Installing Seismic Restraints for Duct and Pipe (FEMA 414).

Figure 7 caption: A failed prong-type splice connector. If conductors become detached from the roof, they are likely to pull from pronged splice Hurricane Protection Techniques connectors. [end of Figure 7 caption] Figure 8 caption: To avoid free ends of connectors being whipped around by wind, bolted splice connectors are recommended because they provide a more reliable connection.  

Strengthening Attachment of Existing Systems: On critically important buildings that use adhesively-attached connectors and pronged splice connectors,Hurricane Protection Techniques it is recommended that attachment modifications based on Construction Guidance be made in order to provide more reliable securement. [End of Recovery Advisory]

Water Damage

Wind Damage Water Damage caused by severe weather, documentation is crucial in most insurance claims. These typically involve owners of homes trying to document damage to cars or houses caused by hail. However, storm damage reports are limited usually to the more spectacular incidents. Moreover, the amount of ti  read more..

Government Grants For Homeowners With Mold

The containment area must be maintained under negative pressure relative to surrounding areas. This will ensure that contaminated air does not flow into adjacent areas. This can be done with a HEPA-filtered fan unit exhausted outside of the building. For small, easily contained areas, Mold Remediation Government Grants For Homeowners With Mold   read more..

How To Clean Soot From Kitchen Cabinets

Fires can rearrange and damage natural walkways, as well as sidewalks, parking lots, roads, Fire Damage How To Clean Soot From Kitchen Cabinets and buildings. Never assume that fire-damaged structures or ground are stable. Buildings that have been burned may have suffered structural damage and could be dangerous. 

<  read more..

Tsunami Facts

Tsunami (pronounced soo-n¡-mees), also known as seismic sea waves (mistakenly called "tidal waves”), are a series of enormous waves created by an underwater disturbance such as an earthquake, landslide, volcanic eruption, or meteorite. A Flood Damage Tsunami Facts can move hundreds of miles per hour in the open ocean   read more..

Odor Control

Say Tenant Move Out Cleanup Odor Control out and did not inform you and it's been a couple of weeks. In that time animals of moved in and started living in your rental. How do you get them out of the walls and attic now that they've taken up residence there. Call a professional restoration company dealing with animal remova  read more..

How To Contract FEMA For Debris Removal

The alternative procedures authorized under the law pertain to debris removal (emergency work)and repair, restoration, and replacement of disaster-damaged public and private non profit facilities(permanent work). This guide outlines the alternative Debris Removal How To Contract FEMA For Debris Removal procedures for debris removal o  read more..

Remove Lead Based Paint From Wood Furniture

To avoid ingesting lead, workers should not eat,drink or smoke on the job. Workers need to clean up carefully. Before leaving the work area, they should dispose of their coveralls, and remove the dust from their clothes with a HEPA filtered vacuum cleaner. And workers should shower as soon as they c  read more..

Tools For Restoring Water Damaged Electronics

The electrochemical process involves deposition of a suitable conductive seed layer inside the porous slug.This layer is electrically contacted and the slug is dipped in a doped monomer solution. Electric current is passed through the seed layer into the doped monomer solution stimulating the oxidat  read more..

Waterproofing A Basement

Damp Basement Diagnosis: The source of your problem could be a water leak or high humidity. Both can lead to mold, mildew, or other biological growth. Depending on the severity, conditions can lead to rot, structural damage, premature paint failure, and a variety of health problems. Water can seep i  read more..

Flooded Areas With Lead based Paint Tennessee

(ATLANTA – May 26, 2010) – Due to recent flooding in western and central Tennessee, the U.S. Environmental Protection Agency (EPA) in Region 4 wants to ensure that families are not at increased risk for lead poisoning, because of clean up and/or Flood Damage Flooded Areas With Lead based Paint Tennessee repair work. 

  read more..