Wind Damage >> Hurricane Protection Techniques

 For other basic wind speeds, or for an importance factor of 1, multiply the tabulated number of #12 screws by to determine the required number of #12 screws or (¼ pan-head screws) required for the desired basic wind speed, VD (mph) and Hurricane Protection Techniques importance factor, I.4. 

For other roof heights up to 200', multiply the tabulated number of #12 screws by (1.00 + 0.003 [h - 30]) to determine Hurricane Protection Techniques the required number of #12 screws or ¼ pan-head screws for buildings between 30' and 200'.

Example A: 24" x 24" exhaust fan screwed to curb (table row 7), Base Case conditions (see Note 1): 2.5 screws per side; therefore, Hurricane Protection Techniques round up and specify 3 screws per side.Example B: 24" x 24" exhaust fan screwed to curb (table row 7).

Base Case conditions, except 120 mph and importance factor of 1: 1202 x 1 902 x 1.15 = 1.55 x 2.5 screws per side = 3.86 screws per side; Hurricane Protection Techniques therefore, round up and specify 4 screws per side.Example C: 24" x 24" exhaust fan screwed to curb (table row 7).

Base Case conditions, except 150' roof height: 1.00 + 0.003 (150' - 30') = 1.00 + 0.36 = 1.36 x 2.5 screws per side = 3.4 screws per side; therefore, Hurricane Protection Techniques round down and specify 3 screws per side.* This factor only applies to the long sides. At the short sides, use the fastener spacing used at the long sides. 

Fan Cowling Attachment: Fans are frequently blown off their curbs because they are poorly attached. When fans are well attached, Hurricane Protection Techniques the cowlings frequently blow off (see Figure 3). Unless the fan manufacturer specifically engineered the cowling attachment to resist the design wind load, cable tie-downs (see Figure 4) are recommended to avoid cowling blow-off. 

For fan cowlings less than 4 feet in diameter, 1/8-inch diameter stainless steel cables are recommended. Figure 3 caption. Cowlings blew off two of the three fans shown in this photo. Cowlings can tear roof membranes and break glazing. [end of caption] Figure 4 caption. To overcome blow-off of the fan cowling, Hurricane Protection Techniques this cowling was attached to the curb with cables.  

For larger cowlings, use 3/16-inch diameter cables. When the basic wind speed is 120 mph or less, specify two cables. Where the basic wind speed is greater than 120 mph, Hurricane Protection Techniques specify four cables. To minimize leakage potential at the anchor point, it is recommended that the cables be adequately anchored to the equipment curb (rather than anchored to the roof deck). 

The attachment of the curb itself also needs to be designed and specified. Ductwork: To avoid wind and windborne debris damage to rooftop ductwork, Hurricane Protection Techniques it is recommended that ductwork not be installed on the roof (see Figure 5). If ductwork is installed on the roof, it is recommended that the gauge of the ducts and their attachment be sufficient to resist the design wind loads. 

Figure 5 caption. Two large openings remained (circled area and inset to the right) after the ductwork on this Hurricane Protection Techniques roof blew away. [end of caption] Condensers: In lieu of placing rooftop-mounted condensers on wood sleepers resting on the roof (see Figure 6), it is recommended that condensers be anchored to equipment stands. 

(Note: the attachment of the stand to the roof deck also needs to be designed to resist the design loads.) In addition to anchoring the base of the condenser to the stand, Hurricane Protection Techniques two metal straps with two side-by-side #14 screws or bolts at each strap end are recommended (see Figure 7). Figure 6 caption. Sleeper-mounted condensers displaced by high winds.  

Figure 7 caption. This condenser had supplemental securement straps (see arrows). Two side-by-side screws with the proper edge and Hurricane Protection Techniques end distances are recommended at the end of the strap. [end of caption] Vibration Isolators: 

When equipment is mounted on vibration isolators, an isolator that has sufficient resistance to meet the design uplift loads should be specified and installed, or Hurricane Protection Techniques an alternative means to accommodate uplift resistance should be provided (see Figure 8). Figure 8 caption. 

The equipment on this stand was resting on vibration isolators that provided lateral resistance Hurricane Protection Techniques but no uplift resistance (above). A damaged vibration isolator is shown in the inset (left). [end of caption] Access Panel Attachment: Access panels frequently blow off. 

To minimize blow-off of access panels, job-site modification will typically be necessary (for example, the attachment of hasps and locking devices such as a carabiner). The modification details will need to be tailored for the equipment, Hurricane Protection Techniques which may necessitate detail design after the equipment has been delivered to the job site. 

Modification details should be approved by the equipment manufacturer. Equipment Screens: Equipment screens around rooftop equipment are frequently blown away (see Figure 9). Equipment screens should be designed to resist the wind loads derived from ASCE 7. Note: The extent that screens may reduce or Hurricane Protection Techniques increase wind loads on equipment is unknown. 

Therefore, Hurricane Protection Techniques the equipment behind screens should be designed to resist the loads previously noted. Figure 9 caption. Several of the equipment screen panels were blown away. Loose panels can break glazing and puncture roof membranes. 

Other resources: Three publications pertaining to seismic restraint of equipment provide general information on fasteners and Hurricane Protection Techniques edge distances: • Installing Seismic Restraints for Mechanical Equipment (FEMA 412) • Installing Seismic Restraints for Electrical Equipment (FEMA 413)• Installing Seismic Restraints for Duct and Pipe (FEMA 414).

Figure 7 caption: A failed prong-type splice connector. If conductors become detached from the roof, they are likely to pull from pronged splice Hurricane Protection Techniques connectors. [end of Figure 7 caption] Figure 8 caption: To avoid free ends of connectors being whipped around by wind, bolted splice connectors are recommended because they provide a more reliable connection.  

Strengthening Attachment of Existing Systems: On critically important buildings that use adhesively-attached connectors and pronged splice connectors,Hurricane Protection Techniques it is recommended that attachment modifications based on Construction Guidance be made in order to provide more reliable securement. [End of Recovery Advisory]

Remove Peeling Lead Paint

The Brownfields/Voluntary Cleanup Program must verify lead-based paint is properly managed and disposed of prior to issuing a Certification of Completion. The requirements of demolition projects will be different in some respects from other lead-based paint abatement projects. Paint residue and peel  read more..

Flood Damage

The following information is primarily useful to libraries that have been damaged in recent storms, this information is also helpful to those persons trying to salvage important, valuable and historic belongings and collections. In some Document restoration Flood Damage cases the use of scanning and digital edit and usin  read more..

How To Clean Up A Flooded Crawl Space

The treatment needed for these fungi is to trace the fungus back to its source of moisture, usually the ground, and cut off the connection. Often it comes up through a brace, frame, wooden concrete form, or grade stake that serves as a bridge to let the fungus grow from moist soil to a joist or sill  read more..

Mask The Smell Of A Dead Animal Under The House

Step 4. Determine if young are involved After finding the main entry you need to verify that no young are inside before proceeding with the eviction process. Because each situation and each animal is different, do this even if it seems early or late in the year for young to be present. Failing to do  read more..

Health Effects Caused By Lead Poisoning

Health effects caused by lead exposure can be subdivided into five developmental stages: Normal, physiological changes of uncertain significance, pathophysiological changes, overt symptoms (morbidity), and mortality. Within this process there are no sharp distinctions, butrather a continuum [ME  read more..

Why Do I Have A Sewage Smell In My House

Results of odor and odorants measurement at Districts A, B, C, D and E.In the instrumental analysis for individual sulfur odorants, H2S and CH3SH concentrations were higher than DMS or DMDS both before and after the agent treatment. The average NH3 concentrations before and after the treatment of th  read more..

Mold Removal From The House

What conditions may pose a problem & why What to do My name is:  Environmental Protection Program Specialist(Health & Safety Management),DAS Facilities Management , 860-713-5678 References used in this slide presentation: Dr. Harriet Burge EMLab P&K Chief Aerobiologist and Water Damage Mold Removal From The House  read more..

Lead Disclosure

All renters who live in Lead Paint Removal Lead Disclosure buildings that were built before 1978 must be provided two copies of the Tenant Lead Law Notification and Tenant Certification Form. If any of the following official papers exist for the rental, renters must also be provided a copy of those as well. Lead exam  read more..

How To Remove Ice Storm Debris

A grading permit from the local government may be necessary if fill material is necessary. The soil should be placed in thin lifts and compacted per local codes and standards. This action must be decided upon before the start of the debris removal process and Debris Removal How To Remove Ice Storm Debris may not be eligible for s  read more..

Federal Grants For Residential Flood Protection

Odds are that the area where you live will flood again. Before you spend a great deal of money and Flood Damage Federal Grants For Residential Flood Protection effort repairing and rebuilding, ask yourself this question:Do I really want to be flooded again?If you think that you would be better off in a different location,talk to your local government or   read more..