Wind Damage >> Roof Damage Insurance Claim In North Carolina

The primary key to good shingle performance is the use of self-seal adhesive, coupled with correct application of fasteners (Smith, 1994). With an adequate number of fasteners, the pull-through resistance of the shingle will determine whether the loss of adhesive seal leads to the shingle being lost. Shingles were attached to roofs using Roof Damage Insurance Claim In North Carolina pneumatic staple guns in many cases. 

Once the wind managed to lift one layer of shingle tabs, the shingles acted as a sail, bending at the attachment and tearing it away. Often the staple Roof Damage Insurance Claim In North Carolina remained in place once the shingle was blown away. 

This would argue for using only nails for shingle attachment. Vognild et al. (1993) observed after Andrew that many fasteners Roof Damage Insurance Claim In North Carolina failed to engage the roof structure, or were randomly placed; these observations caused the authors to question the use of staples as fasteners. 

The lack of a high-wind-rated composition shingle is a serious problem. FEMA recommends that until Roof Damage Insurance Claim In North Carolina such a product is available, a water-resistant membrane - e.g., a hot-mopped underlayment - be installed to protect against water infiltration that could result from loss of cladding (FEMA, 1992). 

Although popular for their appearance and their longevity in high-humidity tropical areas, clay and concrete tile roofs did not perform well in hurricanes Andrew and Iniki. The primary and Roof Damage Insurance Claim In North Carolina most serious problem was failure of the bond between the mortar and tile. 

Because of the bonding problem, Smith (1994) questions whether mortar-set tile can safely be used at all in hurricane areas. A secondary problem was the low ductility of roofing tile. An extensive amount of clay and Roof Damage Insurance Claim In North Carolina concrete tile damage during Andrew was caused by flying debris, which included roof tiles among other types of debris. 

As a tile broke or became dislodged and injected into the wind stream, it was free to impact other tiles, Roof Damage Insurance Claim In North Carolina which were also injected into the wind stream, causing a cascading failure. It was not uncommon during Andrew for flying tiles not only to damage roofs, but also to break windows and cause personal injury (Smith, 1994). 

Because roof tiles (and attaching mortar) are so brittle and easily damaged, Smith suggests that one option is not to use roof tiles in hurricane areas. Instead, metal panels that simulate tile could be used, or Roof Damage Insurance Claim In North Carolina tiles could be developed with higher ductility for use in hurricane areas. 

Roof sheathing and Roof Damage Insurance Claim In North Carolina attachment HUD (1993) identified roof sheathing as a critical component that locks all other roof members together to form a structural system. Roof sheathing failure was a common problem during hurricanes Andrew and Iniki. 

During Andrew, almost 25% of houses assessed by HUD had loss or damage to one or more panels of roof sheathing, commonly starting in the gable end (HUD, 1993). Keith (1994) also observed that roof sheathing commonly failed in the region of the gable-end walls, and Roof Damage Insurance Claim In North Carolina in all cases he reported failure was due to improper fastenings. 

The SFBC requires nail spacing of between 6 inches o.c. and 12 inches o.c., depending on the location of the sheathing panel. But, Roof Damage Insurance Claim In North Carolina in sheathing found blown off, nails were spaced much farther apart, and fastening patterns were often erratic, ranging from 10 inches to 48 inches o.c. 

Further, it was not uncommon to find that staples and nails had been Roof Damage Insurance Claim In North Carolina positioned to miss the underlying framing member completely. Two types of roof sheathing material were common in South Florida: plywood and oriented strand board (OSB) sheathing. Keith (1994) notes that both performed equally well during Andrew. 

However, Kahn and Suaris disagree, saying that OSB performance was inferior to that of plywood, tending to disintegrate and/or curl at the edges under cyclic wind loading and/or Roof Damage Insurance Claim In North Carolina moisture penetration. In Hawaii, OSB is not commonly used, since pressure-treated wood is normally specified. 

When sheathing failure did occur during the case-study hurricanes, the usual reason was inadequate or Roof Damage Insurance Claim In North Carolina improper fastening (Cunningham, 1994; Keith, 1994). Roof sheathing stayed attached during Andrew and Iniki when properly attached. Cunningham (1994) recommends that a "high-wind" fastener schedule be used. 

This would consist of 45 nails, spaced 6 inches o.c., except 4 inches o.c. over the gable end, per each 4 x 8 sheet of plywood or OSB sheathing. This is a more rigorous attachment than the South Florida Build Code allowed: 6d common nails 12 inches o.c. along the interior of the panel, and Roof Damage Insurance Claim In North Carolina 6 inches along the gable end edge. 

Cunningham (1994) also recommends that 8d nails be used instead of 6d. Use of the larger nail doubles the withdrawal resistance of the connection, Roof Damage Insurance Claim In North Carolina according to tests conducted by Cunningham. Attachment methods can have an effect on the uplift resistance of sheathing. 

Riba, et al. (1994), noted after Andrew that some panels appeared to have pulled loose after fastener heads pulled through the panel. They hypothesized that this may have been due to Roof Damage Insurance Claim In North Carolina pneumatically driven nails that have only a partial nail head to accommodate the nail collating system on power-driven nail guns. 

When staples were used, cases were observed in which one leg of the staple missed the underlying truss or rafter. This reduced the strength of the connection by at least 50%. Some staples showed evidence that the staple was driven through the sheathing with excessive force, Roof Damage Insurance Claim In North Carolina leaving only a partial thickness of the sheathing to resist the wind. 

Power nail and staple drivers must be properly adjusted to avoid this problem. If a gable roof is chosen for home-building, Roof Damage Insurance Claim In North Carolina special care must be taken to strengthen the gable ends. Again, gable roofs are especially prone to damage from gable-end collapse, except when properly braced (Keith, 1994). 

Gable-end failure seems attributable primarily to poor or nonexistent bracing between gable-ends and Roof Damage Insurance Claim In North Carolina the rest of the structure. Gable-end failure was less common in Hawaii during Iniki than in south Florida during Andrew. One reason for this was that Iniki's wind speeds were generally less than Andrew. 

But another reason, according to Keith (1994), is that in Hawaii gable-ends are braced at the Roof Damage Insurance Claim In North Carolina top edge by diagonal and/or lateral bracing from the gable-end to the adjacent roof trusses. Another factor that mitigated the number of gable-end collapses during Iniki was the use of structural "outlookers" rather than the "ladder-type" framing used in south Florida. 

Structural outlookers use cantilevered 2x4s oriented flat-wise at roof sheathing joints. These outlookers extend outward from Roof Damage Insurance Claim In North Carolina the first interior truss or rafter over "dropped" gable-end wall framing. According to Keith (1994), such framing provides several advantages: 

1. Provides bracing of the roof framing at the plane of the roof deck during construction and Roof Damage Insurance Claim In North Carolina supplemental distribution of inward and outward forces into the roof "diaphragm" when gable-end walls are subjected to high winds. 2. Provides additional support of roof sheathing at overhanging rake ends. 

Increases stiffness and strength of cantilevered roof systems to provide added resistance to wind uplift forces, Roof Damage Insurance Claim In North Carolina concentrated loads from fascia framing, and foot traffic on the roof deck during construction and maintenance. 3. Increases roof diaphragm shear capacity at the ends of roof decking by creating a "blocked" roof diaphragm in these areas. 

These blocked areas have greater stiffness and shear load capacity, and Roof Damage Insurance Claim In North Carolina the blocking provides improved shear load transfer from gable-end wall framing. 4. Provides additional hold-down attachment points for roof sheathing panels at gable ends where uplift forces are the greatest.

Grants For Tornado Damage Tree Removal

Building demolition debris Approximately 300 houses in Lincoln County sustained damage amounting to more than 50 percent of the value of the house. Most of these homeowners chose to sell their properties to the county in a buyout and demolition program. FEMA and the state Community Development Block  read more..

Sewage Cleanup

There are many ways to control moisture in your home, fix leaks and Water Extraction Sewage Cleanup. If water is entering the house from the outside, your options range from simple landscaping to extensive excavation and waterproofing. (The ground should slope away from the house.) Water in the basement can result from   read more..

Flood Insurance Rates

What is the maximum that can be collected for a loss under the NFIP policy? An insured will never be paid more than the value of the covered loss, less deductible, up to the amounts of insurance purchased. Therefore, purchasing insurance to value is an important consideration. The amount of insuranc  read more..

Snake Removal in Garden

Most people like to have a nice garden the more plan to have, the better, but having a lush garden could also invite Animal Damage Snake Removal in Garden. I'm not sure if you know this but most snakes are not dangerous and most certainly do not want a confrontation with a human. Even the venomous snakes will not attack un  read more..

Mold Poisoning Symptoms

What is mold? molds are simple, microscopic organisms, found virtually everywhere, indoors and outdoors. molds can be found on plants, foods, dry leaves, Mold Remediation Mold Poisoning Symptoms and other organic material. molds are needed for breaking down dead m  read more..

How To Repair Fire Damaged Concrete

Recovering from a fire can be a physically and mentally draining process.When fire strikes, lives are suddenly turned around. Often, Fire Damage How To Repair Fire Damaged Concrete the hardest part is knowing where to begin and who to contact.

The U.S. Fire Administration has gathered the following information to assist you in  read more..

Frozen Pipe Burst Prevention

Cold Weather TipsGuard Against Cold DraftsSince most water meters and pipes are located in unheated areas, they are vulnerable when temperatures dip below freezing. Even a small draft of cold air through a cracked basement window, Water Damage Frozen Pipe Burst Prevention foundation or sill during extremely cold periods could  read more..

Emergency Board Up_Chain Link Fence Security Optio

During a hurricane, homes may be damaged or destroyed by high winds and high waves. Debris can break windows and doors, allowing high winds inside the home. In extreme storms, such as Hurricane Andrew, the force of the wind alone can cause weak places in your home to fail. After Hurricane Andre  read more..

How To Do Radon Testing

REGIONAL RADON TRAINING CENTERS (RRTCS)The EPA supports four Regional Radon Training Centers. Each RRTC is either an individual university or a consortium of universities that offer a variety of radon-related training courses. The EPA strongly encourages participants to be trained in all aspects of   read more..

Plumbing Leak Caused Mold Inside The Wall

Syracuse, NY -- The daily doses of rain that have fallen on Central New York this spring may have some Syracuse area residents ready to call Noah for a reservation. The region has received at least a trace of rain every day since April 16. Since then, Water Damage Plumbing Leak Caused Mold Inside The Wall about 8 inches of rain has fallen  read more..