Lead Paint Removal >> Work Related Lead Exposure

Laboratories performing lead analyses on blood samples drawn in California are required by law to report electronically all results to the California Department of Public Health (CDPH). The Occupational Lead Poisoning Prevention Program (OLPPP) collects test results for adults 16 years of age and over and enters them into Work Related Lead Exposure the California Occupational Blood Lead Registry. 

We use this information to identify cases of lead poisoning that need follow-up as well as to target employers and industries for OLPPP’s prevention efforts. Scientists and medical professionals now recommend that blood lead levels (BLLs) be maintained below 10 micrograms per deciliter (µg/dL) to prevent long-term Work Related Lead Exposure health effects (OLPPP, 2009). 

The Centers for Disease Control and Prevention (CDC) and the Adult Blood Lead Epidemiology and Work Related Lead Exposure Surveillance Program (ABLES) of the National Institute of Occupational Safety and Health (NIOSH) have recently revised their definitions of "elevated” to reflect this new information (CDC, 2012; ABLES, 2009). OLPPP now defines an elevated BLL as a BLL at or above 10 µg/dL. 

In this report we discuss the limitations of our data, present the key findings for 2008- 2011, and briefly review our efforts to improve tracking of work-related lead overexposure. Limitations The data presented here are incomplete and cannot fully describe the magnitude and Work Related Lead Exposure distribution of elevated BLLs among California workers. The most significant limitation is that many employers fail to provide BLL testing to their lead-exposed workers. 

OLPPP previously (1996-2008) looked at how many employers were providing BLL testing in 5 industries in which significant lead exposure is possible: 87% of battery manufacturers, 56% of non-ferrous foundries (lead-using), 14% of radiator repair (copper-brass), 8% of painting companies (licensed Work Related Lead Exposure San Francisco painting contractors), and only 1% of wrecking and demolition companies were BLL testing (OLPPP, 2002; OLPPP, unpublished data, 2008). 

The result of this large testing deficiency is that we do not know the true numbers of California workers with elevated BLLs, Work Related Lead Exposure nor can we determine the relative risk of lead overexposure since the proportion of employers testing varies widely by industry. We believe that the numbers presented here likely represent a significant underestimate of the number of California workers overexposed to lead. 

Our data are also incomplete because the majority of BLL reports the program receives do not identify the individual’s employer, Work Related Lead Exposure making it difficult for us to determine if the exposure source is occupational and, if so, which industry the individual works in. 

OLPPP contacts the laboratory or the health care provider who ordered the test to obtain complete Work Related Lead Exposure information on all BLLs 10 µg/dL or above; however we do not have the resources to contact providers on the thousands of BLL results below 10 that lack employer information. 

Despite these limitations, the data we collect provide valuable information on industries where BLL testing is more consistent and those where more testing is needed. Additionally, Work Related Lead Exposure among industries where testing is more robust, BLL distributions shed light on which of those appear to be more successful in controlling worker exposure. 

We can learn from these findings and direct our prevention efforts to areas where more attention is needed to increase testing Work Related Lead Exposure and/or improve worker protections. Key findings for the Registry for the four-year period 2008-2011 Each year OLPPP receives over 56,000 reports for approximately 50,000 individuals. 

We do not know the type of lead exposure for the majority (~55%) of reports. (Table 1) For those individuals for whom we know the exposure source, approximately 17,000 – 18,000 are exposed at work Work Related Lead Exposure and approximately 2,000 have a non-occupational exposure. The findings below are limited to the reports where the workplace was identified as the source of exposure, and are limited to each worker’s highest BLL in that year.  

BLL Distribution: OLPPP received elevated BLL reports (10 µg/dL or greater) for 1,393 - 1,868 workers each year; 8-10% of the workers tested. (Table 2) Workers can be tested multiple times in one year, or Work Related Lead Exposure in succeeding years; the total number of individual workers with elevated BLLs between 2008 and 2011 was 3,615. 

These workers are at risk for long-term health effects such as hypertension and decrements in kidney and Work Related Lead Exposure cognitive function. Gender and Age: The overwhelming majority of workers with elevated BLLs reported to the Registry were male (96-97%), with an age range typical of a working population (88% between the ages of 20 and 59 years). 

Hispanic Surname: Workers with Hispanic surname were disproportionately represented among workers with elevated BLLs. California’s workforce is 36% Hispanic (BLS, 2011), Work Related Lead Exposure whereas the proportion of Hispanic surnames among individuals with elevated BLLs reported to the Registry was 64-70%, suggesting that Hispanic workers are more likely to be exposed to lead on the job. 

The proportion of individuals with Hispanic surnames Work Related Lead Exposure and BLLs below 10 µg/dL was 41-43%. Place of Employment: A large proportion of workers with elevated BLLs was employed in Los Angeles County (44-49%). This reflects the concentration of lead industries, as well as population, in this county. 

Riverside County had the next highest proportion of workers with elevated BLLs, at 7-9%. Place of Residence: The largest numbers of workers with elevated BLLs live in Los Angeles, San Bernardino, Riverside, Orange, and Alameda counties. Children and pregnant woman living with these workers are at risk of take-home lead exposure and Work Related Lead Exposure may need follow-up by local childhood lead poisoning prevention programs. 

Industry Distribution, all reported workers: Individuals reported to the Registry (with elevated and non-elevated BLLs) worked in 212 different industries. However, Work Related Lead Exposure a few industries accounted for the largest number of workers receiving BLL tests: Remediation Services (primarily lead abatement); Storage Battery Manufacture; 

Site Preparation Contractors (primarily wrecking and demolition); Painting Contractors; Government Air, Water, and Waste Programs; Secondary Smelting (primarily battery recycling); and Recyclable Material (primarily scrap metal and Work Related Lead Exposure electronic recycling). OLPPP codes industries using the North American Industry Classification System (NAICS, 2002). 

Type of Industry: 58% of workers with elevated BLLs reported to the Registry in 2011 worked in manufacturing, 17% worked in construction, Work Related Lead Exposure and 23% worked in other industries. BLL Distribution by Industry: The BLL distribution for reported workers varies significantly by industry. Among industries reported in 2011: 

Only 4% of workers in lead remediation and 5% of workers in wrecking and demolition had BLLs above 10 µg/dL; o Storage battery manufacture and secondary smelting (primarily battery recycling) had much higher percentages of workers with BLLs above 10 µg/dL (41% and 70% respectively); and Approximately one quarter of workers in two other industries of interest, painting and Work Related Lead Exposure scrap metal recycling, had BLLs above 10 µg/dL. 

By looking at detailed data on worker BLLs < 10 µg/dL, it is clear that many employers who test have been successful in controlling lead exposure. Due to significant under testing, Work Related Lead Exposure we cannot say whether these data represent the real BLL distribution in all of these industries. The exception to this is the battery manufacturing and recycling industries in which almost all employers conduct periodic BLL testing.

Water Extraction Techniques From Hurricane Sandy

Water restoration companies utilize the Applied Structural Drying (ASD) technique when extracting large quantities of water from a water damaged structure. Applied Structural Drying utilizes knowledge to efficiently reduce Structural Drying Water Extraction Techniques From Hurricane Sandy expensesby excluding expensive tear out and removal cost. This drying  read more..

How To Remove Asbestos Pipe Insulation

Pressure Differential: The design parameters for static pressure differentials between the inside and outside of enclosures typically range from 0.02 to 0.10 inches of water gauge, depending on conditions. All zones inside the enclosure must have less pressure than the ambient pressure outside of th  read more..

How To Protect A Washer Dryer From A Flood

If there are no signs of problems, Flood Damage How To Protect A Washer Dryer From A Flood turn the power off again.Plug a lamp or small appliancein an outlet on the circuit youjust tested, or turn on a lightswitch. Be sure that the appliance you are using to test eachoutlet is working properly.

5.Turn the power  read more..

Water Extration Equipment For Roof Leaks

Does the State have a list of professional mold contractors?New York does not certify or license building contractors, Water Extraction Water Extration Equipment For Roof Leaks including mold contractors. 

If youhire a contractor to work on your flooded home and your home was built before 1978, checkwhether t  read more..

How To Remove Asbestos Flooring Adhesive

Workplace exposures at the facility after 1992 were probably much lower than exposures that occurred prior to 1992 because Libby ore was no longer used at the facility after 1992. In 2000, EPA measured 0.0107 structures/cc in Asbestos Abatement How To Remove Asbestos Flooring Adhesive air next to the exfoliation ovens (EPA 2001). 
<  read more..

Derechos Tornadoes And Cyclones X

The rain produced by the newer storms reinforces the cold pool, strengthening the inflow of air from the back side of the developing storm complex and encouraging the downward transport of higher momentum air from aloft. These processes can enable the system Wind Damage Derechos Tornadoes And Cyclones X to attain a nearly steady-  read more..

How To Stop Water And Mold In A Crawlspace

Many molds produce numerous protein or glycoprotein allergens capable of causing allergic reactions in people. These allergens have been measured in spores as well as in other fungal fragments. An estimated 6%-10% of the general population and Crawl Space Drying How To Stop Water And Mold In A Crawlspace 15%-50% of those who are genetically susc  read more..

Bird And Animal Damage To Lawns

This free permit is given to control a nuisance wild animal protected by state law. Those who provide a service to the public or charge a fee for nuisance wild animal control services must pass a test before obtaining a permit. Migratory birds, including Canada geese and woodpeckers, are federally p  read more..

Water Damage

Following any kind of water damage, whether it's from a ruptured water heater or from a flood, there will need to be Dehumidification Water Damage. Of course, the amount of water will make the water extraction procedures drastically different but the cleanup in some ways will be the same. Before any water damage clea  read more..

Tree Removal From Flood Damage

Monitoring costs in operations we reviewed ranged from 20% to 33% of the total cost of debris operations. Other reviews have reported monitoring costs of as FEMA's Oversight and Management of Debris Removal Operations Page 23 much as 50% of total debris costs. Having enough FEMA, state, or local off  read more..