Smoke Damage >> Effects Of Smoke On Electronic Equipment

In the United States, flammability requirements for electrical equipment are most commonly specified in the National Electrical Code (NEC) [12]. Specific testing requirements are then defined by testing laboratory standards (e.g., Underwriters Laboratories, Canadian Standards Association, etc.). Such standards are essentially voluntary until required by a building code,regulatory agency, Effects Of Smoke On Electronic Equipment or by the building owner as part of the bid process for construction of a facility. 

Such requirements are included in the specifications of various organizations such as the U.S. Nuclear Regulatory Commission (NRC), the Department of Defense, transportation authorities, and other large organizations. These specifications include requirements governing the allowable ignition, Effects Of Smoke On Electronic Equipment flame spread, and smoke production of materials, along with the design,installation, and use of electrical devices and systems.

In addition to direct regulation of the flammability and smoke generation properties of materials and Effects Of Smoke On Electronic Equipment equipment, there is also interest in indirect effects on the operational capabilities of personnel and equipment that may be exposed to a fire environment resulting from a fire. 

In NPP applications, Effects Of Smoke On Electronic Equipment operators must be able to perform appropriate safe shutdown operations and equipment may be critical to plant monitoring or to safe shutdown procedures so that both the direct effects of fire and indirect effects of fire generated smoke are of interest to ensure safe plant shutdown.

Considerable research has been conducted on the direct effects of fire in NPP applications [11].Recent studies have reviewed potential sub lethal effects of fire effluent [13]. A review of both direct and Effects Of Smoke On Electronic Equipment indirect effects of fire on electrical equipment [7] was also a resource for this report.

This chapter provides a review of Effects Of Smoke On Electronic Equipment studies of indirect fire effects on electrical equipment including studies specific to NPPs plus a significant base of research related to telecommunications equipment.2.1 Nuclear Power Plant Equipment 2.1.1 Susceptible Components in NPP Applications The earliest treatment of indirect fire damage to nuclear power facilities is a report prepared for the NRC by the NUS Corporation in 1985 [14]. 

The report evaluates the damaging aspects of fire environments, Effects Of Smoke On Electronic Equipment the susceptibility of various components to damage and the importance of those components to plant safety. Of particular interest was the impact of conditions associated with suppression activities (high humidity or liquid water effects).

Elevated temperatures below ignition temperatures of typical materials, and corrosion due to products from cable fire or Effects Of Smoke On Electronic Equipment gaseous suppression agents.Components were selected for evaluation based on the Fire Hazards Analysis (FHA) reports from four NPPs. Those components necessary to achieve and maintain safe-shutdown were evaluated based on Environmental Qualification (EQ) test reports and hydrogen burn tests. 

The EQ reports were used to judge resistance to elevated temperatures and high humidity or liquid water effects. The hydrogen burn tests and Effects Of Smoke On Electronic Equipment numerical simulations subjected a variety of electrical and electromechanical components to elevated temperatures, pressures and humidity caused by hydrogen fires in confined spaces. 

The hydrogen burn results indicated functionality of specific components and likely causes of failure. Based on the sources above and extensive use of engineering judgment, Effects Of Smoke On Electronic Equipment components were assigned ratings in a number of distinct categories describing damage ability and significance to plant operability. 

These ratings were weighted according to relative importance and Effects Of Smoke On Electronic Equipment combined into a single value to describe the overall hazard produced by exposing a given component to adverse environmental conditions. The primary result of these experiments is a relative ranking of components by both importance and susceptibility to fire damage. 

This information, shown in Table 1, is expressed for each component as a single number ranging from 0 to 1, Effects Of Smoke On Electronic Equipment with higher values indicating greater importance and risk of damage. Because the tests used clean burning hydrogen, the applicability of these results is limited with respect to smoke damage, but does provide guidance for identifying components that are both important to plant operation and sensitive to environmental conditions. 

It is also worth noting that this assessment applies almost exclusively to analog technology. Equipment Exposure to Full-Scale Fire Environments In response to reports of significant damage caused by so called "secondary environments”created by fires in NPP and other applications, Effects Of Smoke On Electronic Equipment Sandia National Laboratories (SNL) performed a number of cabinet burn tests aimed to better understand the safety issues associated with fires in NPPs. 

These environments include elevated temperatures and humidity and the presence of particulates and Effects Of Smoke On Electronic Equipment corrosive gases. The primary goal was to determine functionality of components when exposed to these environments. Data were also collected to characterize the environments to which those components were exposed. In addition to the burn tests, a small number of thermal failure and long term corrosion tests were included.

The components used in the tests were selected to represent the most easily damaged NPP electrical components, as identified in Ref. [14]. Some of these were powered during the test and subject to active monitoring, while others were unpowered and Effects Of Smoke On Electronic Equipment evaluated for functionality after the test was complete. 

In order to add conservatism and represent a wider variety of designs, Effects Of Smoke On Electronic Equipment some components were placed in non-standard orientations or modified (such as by removal of protective cases) to increase susceptibility to expected causes of failure.Five burn tests were performed, all using unqualified 1 polyvinyl chloride (PVC)-insulated cable as the fuel package. 

Room size and cabinet configuration were varied as was the arrangement of components. The fires lasted between 15 minutes and 40 minutes, Effects Of Smoke On Electronic Equipment and exhibited peak heat release rates between 185 kW and 995 kW. The fires were allowed to burn completely; no suppression was used. Component failures and degradation due to the room-scale burn test were as follows: Switches exhibited slight sensitivity to fire exposure. 

For some, a small number of voltage stresses (at most 15 Vac) were required to resume conduction while others had only slight increases in contact resistance. Fire size and Effects Of Smoke On Electronic Equipment exposure were seen as the most significant factors contributing to degradation. Overall, fire exposure did not impede normal operation of the switches tested. 

Relays (powered and unpowered) showed minor signs of corrosion after testing but did not suffer any loss of functionality. Meters did not suffer any loss of functionality. It is noted that these are generally well sealed, Effects Of Smoke On Electronic Equipment making them less susceptible to infiltration by products of combustion. Pen-based chart recorders suffered mechanical failure due to particulate deposition. 

There was no indication of electrical failure. Electronic counters did not fail during the burn test, Effects Of Smoke On Electronic Equipment despite significant particulate deposition. Some power supply and amplifiers responded adversely to increased temperatures, but were not affected by the products of combustion and functioned properly after the test. 

How To Dehumidify Air

Dehumidification Options Tunnel Moisture Load: The cost of dehumidification is directly related to Dehumidification How To Dehumidify Air the moisture the tunnel air will pick up from water sources in the tunnel. To keep the air dry at low cost, it will be essential that water sources are eliminated or kept to a minimum. A  read more..

Carpet Cleaning After Water Damage

The Federal Emergency Management Agency and the city of New Orleans recently announced additional Katrina-related grants totaling nearly $7 million that will directly benefit two recovery projects within the city – the Joe Brown Center in New Orleans East and Water Extraction Carpet Cleaning After Water Damage the Municipal Yacht Harb  read more..

How To Clean Out A Trashed Rental House

Renting, Security Deposits, and Evictions Leases are important legal documents governing the rights and duties of renters of any type of housing. Leases are usually prepared by landlords. The terms of the lease, therefore, are often written in the landlord's favor. A prospective tenant Tenant Move Out Cleanup How To Clean Out A Trashed Rental House&nbs  read more..

Mold Remediation

A constant presence of humidity in no time will start to form mold, and because in most cases mold will reproduce by forming spores that are released into the air. As the mold spores land on a moist, damp surface they will begin to multiply. Mold will penetrate right through porous materials   read more..

What To Do During A Sewer Backup

What to do during a sewer backup Immediate actions If sewage is flowing out of floor drains, toilets,sinks, etc., place rags in or over the backup to stop or reduce the flow; secure the rags in place with a sandbag, kitty litter etc. Wash hands and all body parts with soap and Sewage Cleanup What To Do During A Sewer Backup water t  read more..

Protecting Against Hurricanes

Attachment of Brick Veneer in High-Wind Regions Table 1. Brick Veneer Tie Spacing Wind Speed (mph)(3-Second Peak Gust) Maximum Vertical Spacing for Ties 16" stud spacing 24" stud Wind Damage Protecting Against Hurricanes spacing 90 18.0a 16.0a 100 18.0a 16.0a 110 18.0a 14.8 120 18.0a NAb 130 15.9 NAb 140 13.7 NAb 150 10.2 Nab  read more..

Public Water Systems Affected By Boulder Floods

General Draft Guidance for Public Water Systems Affected by September 2013 Flood Emergencies Water systems that have had a power outage or disruption in service Any water system that has lost power and/or had a disruption in water supply during the flood emergency should assume that there has b  read more..

The Cost Of Water Damage

How Can I Save Money? The price you pay for your homeowners insurance can vary by hundreds of dollars, depending on the size of your house and the insurance company you buy your policy from. Here are some ways to save money:1. Shop around Prices vary from company to company, Water Damage The Cost Of Water Damage so it pay  read more..

Call A Lead Paint Removal Specialist

Paint or varnish peeling, chipping or flaking? Mop floors to clean instead of sweeping. Carpets are good to cover painted wood floors. Wet scrape or wet sand to avoid creating dust: repaint surface with two coats of paint; encapsulant paint is the best. Painted Furniture & toys have paint chi  read more..

Health Risks From Lead Paint

Zinc protoporphyrin results from the inhibition of the enzyme ferrochelatase which catalyzes the insertion of an iron molecule into the protoporphyrin molecule, which then becomes heme. If iron is not inserted into the molecule then zinc, having a greater affinity for protoporphyrin, takes the place  read more..