Smoke Damage >> Effects Of Smoke On Electronic Equipment

In the United States, flammability requirements for electrical equipment are most commonly specified in the National Electrical Code (NEC) [12]. Specific testing requirements are then defined by testing laboratory standards (e.g., Underwriters Laboratories, Canadian Standards Association, etc.). Such standards are essentially voluntary until required by a building code,regulatory agency, Effects Of Smoke On Electronic Equipment or by the building owner as part of the bid process for construction of a facility. 

Such requirements are included in the specifications of various organizations such as the U.S. Nuclear Regulatory Commission (NRC), the Department of Defense, transportation authorities, and other large organizations. These specifications include requirements governing the allowable ignition, Effects Of Smoke On Electronic Equipment flame spread, and smoke production of materials, along with the design,installation, and use of electrical devices and systems.

In addition to direct regulation of the flammability and smoke generation properties of materials and Effects Of Smoke On Electronic Equipment equipment, there is also interest in indirect effects on the operational capabilities of personnel and equipment that may be exposed to a fire environment resulting from a fire. 

In NPP applications, Effects Of Smoke On Electronic Equipment operators must be able to perform appropriate safe shutdown operations and equipment may be critical to plant monitoring or to safe shutdown procedures so that both the direct effects of fire and indirect effects of fire generated smoke are of interest to ensure safe plant shutdown.

Considerable research has been conducted on the direct effects of fire in NPP applications [11].Recent studies have reviewed potential sub lethal effects of fire effluent [13]. A review of both direct and Effects Of Smoke On Electronic Equipment indirect effects of fire on electrical equipment [7] was also a resource for this report.

This chapter provides a review of Effects Of Smoke On Electronic Equipment studies of indirect fire effects on electrical equipment including studies specific to NPPs plus a significant base of research related to telecommunications equipment.2.1 Nuclear Power Plant Equipment 2.1.1 Susceptible Components in NPP Applications The earliest treatment of indirect fire damage to nuclear power facilities is a report prepared for the NRC by the NUS Corporation in 1985 [14]. 

The report evaluates the damaging aspects of fire environments, Effects Of Smoke On Electronic Equipment the susceptibility of various components to damage and the importance of those components to plant safety. Of particular interest was the impact of conditions associated with suppression activities (high humidity or liquid water effects).

Elevated temperatures below ignition temperatures of typical materials, and corrosion due to products from cable fire or Effects Of Smoke On Electronic Equipment gaseous suppression agents.Components were selected for evaluation based on the Fire Hazards Analysis (FHA) reports from four NPPs. Those components necessary to achieve and maintain safe-shutdown were evaluated based on Environmental Qualification (EQ) test reports and hydrogen burn tests. 

The EQ reports were used to judge resistance to elevated temperatures and high humidity or liquid water effects. The hydrogen burn tests and Effects Of Smoke On Electronic Equipment numerical simulations subjected a variety of electrical and electromechanical components to elevated temperatures, pressures and humidity caused by hydrogen fires in confined spaces. 

The hydrogen burn results indicated functionality of specific components and likely causes of failure. Based on the sources above and extensive use of engineering judgment, Effects Of Smoke On Electronic Equipment components were assigned ratings in a number of distinct categories describing damage ability and significance to plant operability. 

These ratings were weighted according to relative importance and Effects Of Smoke On Electronic Equipment combined into a single value to describe the overall hazard produced by exposing a given component to adverse environmental conditions. The primary result of these experiments is a relative ranking of components by both importance and susceptibility to fire damage. 

This information, shown in Table 1, is expressed for each component as a single number ranging from 0 to 1, Effects Of Smoke On Electronic Equipment with higher values indicating greater importance and risk of damage. Because the tests used clean burning hydrogen, the applicability of these results is limited with respect to smoke damage, but does provide guidance for identifying components that are both important to plant operation and sensitive to environmental conditions. 

It is also worth noting that this assessment applies almost exclusively to analog technology. Equipment Exposure to Full-Scale Fire Environments In response to reports of significant damage caused by so called "secondary environments”created by fires in NPP and other applications, Effects Of Smoke On Electronic Equipment Sandia National Laboratories (SNL) performed a number of cabinet burn tests aimed to better understand the safety issues associated with fires in NPPs. 

These environments include elevated temperatures and humidity and the presence of particulates and Effects Of Smoke On Electronic Equipment corrosive gases. The primary goal was to determine functionality of components when exposed to these environments. Data were also collected to characterize the environments to which those components were exposed. In addition to the burn tests, a small number of thermal failure and long term corrosion tests were included.

The components used in the tests were selected to represent the most easily damaged NPP electrical components, as identified in Ref. [14]. Some of these were powered during the test and subject to active monitoring, while others were unpowered and Effects Of Smoke On Electronic Equipment evaluated for functionality after the test was complete. 

In order to add conservatism and represent a wider variety of designs, Effects Of Smoke On Electronic Equipment some components were placed in non-standard orientations or modified (such as by removal of protective cases) to increase susceptibility to expected causes of failure.Five burn tests were performed, all using unqualified 1 polyvinyl chloride (PVC)-insulated cable as the fuel package. 

Room size and cabinet configuration were varied as was the arrangement of components. The fires lasted between 15 minutes and 40 minutes, Effects Of Smoke On Electronic Equipment and exhibited peak heat release rates between 185 kW and 995 kW. The fires were allowed to burn completely; no suppression was used. Component failures and degradation due to the room-scale burn test were as follows: Switches exhibited slight sensitivity to fire exposure. 

For some, a small number of voltage stresses (at most 15 Vac) were required to resume conduction while others had only slight increases in contact resistance. Fire size and Effects Of Smoke On Electronic Equipment exposure were seen as the most significant factors contributing to degradation. Overall, fire exposure did not impede normal operation of the switches tested. 

Relays (powered and unpowered) showed minor signs of corrosion after testing but did not suffer any loss of functionality. Meters did not suffer any loss of functionality. It is noted that these are generally well sealed, Effects Of Smoke On Electronic Equipment making them less susceptible to infiltration by products of combustion. Pen-based chart recorders suffered mechanical failure due to particulate deposition. 

There was no indication of electrical failure. Electronic counters did not fail during the burn test, Effects Of Smoke On Electronic Equipment despite significant particulate deposition. Some power supply and amplifiers responded adversely to increased temperatures, but were not affected by the products of combustion and functioned properly after the test. 

Storm Damage

In the event of a severe thunderstorm that causes damage to a retail building or even if it is in a single family dwelling. In this Electronic Restoration Storm Damage cause extensive damage to electronic equipment, this equipment should be taken to an electronic restoration facility. Possibly one that is owned by a reputa  read more..

Dry Out After A Flood

A building that has been damaged by rising water can bea dangerous place. This will help you know what to lookout for and how to protect yourself and Flood Damage Dry Out After A Flood your family. It willalso tell you what you need to know about cleaning upand making your home safe to live in again.

Watch Out for  read more..

When Was Asbestos Banned?

Banned products and uses Under the Toxic Substances Control Act (TSCA): Banned Manufacture, Importation, Processing and Distribution in Commerce of Certain asbestos-containing Products Corrugated paper Rollboard Commercial paper Asbestos Abatement When Was Asbestos Banned? Specialty paper Flooring felt. 

  read more..

Lead based Paint In Flooded Areas

(ATLANTA – May 26, 2010) – Due to recent flooding in western and central Tennessee, the U.S. Environmental Protection Agency (EPA) in Region 4 wants to ensure that families are not at increased risk for lead poisoning, because of clean up and/or repair work. EPA urges pregnant women and children t  read more..

Carpet Cleaning Without Water

Constituents from six major chemical groups were measured: radionuclides, major and trace elements, organo chlorine pesticides and PCBs, PAHs, UWI compounds, and current-use pesticides. The results of the chemical analyses are presented in tables 2–7. Interpretations of data listed in this report a  read more..

Water Lead Test

If your residence was built prior to 1978, have your residence tested for Lead Paint Removal Water Lead Test and learn about potential lead dangers. Fix any dangers that you might have. You could get your residence checked for in one or both of the following methods: 

A house paint inspection — this tell  read more..

How To Dry A Moldy Wet Basement

Molds are fungi that grow best in warm, damp environments – like your flooded basement. If your home has been flooded and has been closed up for several days, you can assume it has been contaminated with Basement Drying How To Dry A Moldy Wet Basement mold. Mold and Health Some people are sensitive to molds – even dead molds. Exposure  read more..

Should You Install A Dehumidifier In Your Crawl Sp

A building that has been flooded can be a dangerous place. This page will provide you information about cleaning up and making your home safe to live in again. See also Going Back In and Being Safe. Stay Safe while you Work.
Crawl Space Drying Should You Install A Dehumidifier In Your Crawl Sp Wear a hard hat and safety goggles when there is a danger o  read more..

Flood Management Methods

Stand away from, Flood Damage Flood Management Methods not under,the sag. (Under a doorway is safest.) Poke a hole in the ceiling at the edge of the sag so any trapped water can begin to drain. Do not start at the center of the sag because the ceiling may collapse suddenly.

Rescue the Most Valuable Items Find and pro  read more..

Lawn Damage From Raccoons And Skunks

Relationship of This Environmental Assessment to Other Environmental Documents has issued a Final Environmental Impact Statement on the national APHIS/Animal Damage Lawn Damage From Raccoons And Skunks program. Pertinent information avai  read more..