Smoke Damage >> Smoke Damage Cleanup Tips

This report presents a review of smoke production measurement, prediction of smoke impact as part of computer-based fire modeling, and measurement and prediction of the impact of smoke through deposition of soot on and  Smoke Damage Cleanup Tips corrosion of electrical equipment. 

Equipment damage from smoke stems primarily from an increased resistance in circuits and connections by corrosive metal loss, and creating conductive paths for current leakage due to smoke deposition. The former Smoke Damage Cleanup Tips may take hours or days after the fire is extinguished to manifest itself in equipment failure, while the latter may occur at failure levels any time soon after initial smoke exposure. 

The literature review on smoke corrosivity testing and damage due to smoke deposition emphasizes (despite extensive research on smoke corrositity) the lack of validated and widely Smoke Damage Cleanup Tips applicable prescriptive or performance-based methods to assure electrical equipment survivability given exposure to fire smoke. 

Corrosion failures following smoke exposure take days or longer to manifest themselves, and Smoke Damage Cleanup Tips corrective actions in the interim time can take place if the exposure is not too severe and intervention is timely. Circuit bridging via current leakage through deposited smoke was identified as an important mechanism of electronic and electrical equipment failure during NPP fires. 

In order to assess the Smoke Damage Cleanup Tips potential for damage due to smoke exposure, relationships between smoke exposure and the failure of real electronic components need to be established. A smoke damage routine developed for a fire model could then assess the near term (during and soon after exposure) damage potential of electronics and electrical components design fire exposures. 

Understanding of absorption of acid gases by smoke and its deposition on surfaces (as a function of temperature, humidity, and smoke reactivity) would be necessary to develop models that could estimate the Smoke Damage Cleanup Tips deposition behavior of smoke. 

EFFECT OF CORROSION PROBE THICKNESS In the longer term, better understanding of combustion, gas-phase, and liquid chemistry could allow Smoke Damage Cleanup Tips estimates of the formation rate of smoke and acid gases as a function of the ventilation, thermal, and fire environments.

In Part 4 [78] of the PFPC study, it is noted that for the cone corrosimeter that the amount of corrosion lost as measured by the 2500 … probe was always higher than that measured by the 45 000 … probe for the same Smoke Damage Cleanup Tips material. Since corrosion is a localized phenomenon, it is possible for different parts of a conductor to have different amounts of material removed. 

Considering the test probe as a series of resisters with different heights (due to local pitting) but the same width and length, the total Smoke Damage Cleanup Tips resistance of the probe can be quite different than that of a probe of average thickness throughout. 

To show the impact of the thickness of the probe and the local variability of the corrosion, consider Figure B-1. It shows a range of Smoke Damage Cleanup Tips probes with thicknesses from 2500 Å to 40 000 Å exposed to the same test environment. 

The "average loss” numbers are from the original data and are determined by calculation from total probe mass loss assuming mass is lost uniformly across the Smoke Damage Cleanup Tips probes. Modeled measures of metal loss (indicated by resistance change) with pitting. 

To estimate the impact of random pitting of a probe, a hypothetical probe was divided into a number of Smoke Damage Cleanup Tips sections with the same width and height, but with a random variation in section height chosen such that the total mass lost was consistent with the average value. 

As can be seen the thicker the probe, the closer the average of the experiments matches the average mass loss calculation. For thinner probes, this results in individual Smoke Damage Cleanup Tips sections particularly thin with higher resistance values. When the whole probe is considered as resistances in series, this results in a higher overall resistance. 

ANALYSIS OF GAS COLLECTION IN A CORROSION TEST APPARATUS To extend the type of analysis of Gandhi [97,98] to consider the withdrawn ASTM E05 test, this Smoke Damage Cleanup Tips section provides an idealized analysis of the gas volume within an arbitrary test chamber. 

The difficulty modeling the ASTM E05 test is the expansion bag, because that leads to a changing volume. Assuming an idealized expansion bag that keeps the pressure in the Smoke Damage Cleanup Tips chamber constant leaves three state variables to describe the chamber.

Mass in chamber, M, the volume of the chamber V and the temperature in the chamber T. Because the chamber captures and holds all the effluent the change in mass can be described by where mb is the rate of the mass of the Smoke Damage Cleanup Tips sample burning and  is the ratio of mass entrainment rate to mass burned rate as a function of height above the sample and the HRR of the sample. 

An energy balance can be used to calculate the temperature where E is the enthalpy in the chamber, c p is the heat capacity of air at constant pressure and Tin is the temperature of the mass entering the Smoke Damage Cleanup Tips chamber from the burning sample. Solving for rate of change of temperature yields. 

Differentiating the volume using the ideal gas law gives where P0 is the constant pressure in the Smoke Damage Cleanup Tips chamber and R R Mave with R being the ideal gas constant and Mave is the average mass of a molecule of air. 

Notice that the rate of change in the volume is directly proportionally to the rate of change in the enthalpy in the chamber so that Calculating P0 in terms of initial conditions, making the Smoke Damage Cleanup Tips substitution in the previous equation and grouping terms results in which interestingly enough is virtually the nondimensionalized differential equation for the volume. 

The three state equations that govern the gas collection system have now been defined. To understand the Smoke Damage Cleanup Tips impact of a gas collection system on the corrosion test, it is important to look at factors that control corrosion, in this case the products produced by burning a test sample. 

Gandhi’s analysis focuses on the mass fraction, Ya, of a species a given that some fraction, y a, of the mass burned becomes a. While this  Smoke Damage Cleanup Tips  assumption ignores details of any reaction chemistry, it is appropriate for a simple analysis of these gas collection systems. 

For the ASTM E05, test, consider what happens if a constant fraction of the mass burned, mb goes to producing a. That produces the following equation for the mass of a in the chamber, which Smoke Damage Cleanup Tips can be written as M·Ys with Ys being the mass fraction of a Solving forgives Since corrosion is based on the concentration, which can be very different from the mass fraction.

Especially if the volume of the chamber changes, the change in concentration is given by Combining and simplifying gives Gandhi non dimensionalizes the Smoke Damage Cleanup Tips equations using the initial conditions to result in the following equations for the ASTM E05 gas collection system

File An Insurance Fire Damage Claim

You may be at an even greater risk of flooding due to recent fire that have burned across the region. Large-scale fire dramatically alter the terrain and ground conditions. Normally, Fire Damage File An Insurance Fire Damage Claim vegetation absorbs rainfall, reducing runoff. 

However, fire leave th  read more..

General Mold Cleanup Procedures

General Mold Cleanup Procedures Identify and correct the moisture source Clean, disinfect, and dry the moldy area Bag and dispose any material that has moldy residues, such as rags, paper, leaves, or debris What can I save? What should I toss? Substances that are porous and can trap molds, such as p  read more..

Sewer Smell In My Basement Apartment

What is sewer gas?Sewer gas is a complex mixture of toxic and nontoxic gases which collect in the sewage system at varying levels depending on the source. Sewer gas is formed during the decay of household and industrial waste. Highly toxic components of sewer gas include hydrogen sulfide and ammonia  read more..

How To Restore Furniture From Smoke Damage

A review is presented of the state of the art of smoke production measurement, prediction of smoke impact as part of computer-based fire modeling, and measurement and prediction of the impact of smoke through deposition of soot on and Smoke Damage How To Restore Furniture From Smoke Damage corrosion of electrical equipment. 
  read more..

Murder Cleanup

In the United States it seems there are an estimated 15,000 murders committed every year and with these murders there is a high demand for Crime Scene Cleanup Murder Cleanup. It is good to learn that the homicide rate has actually declined substantially since the beginning of the 1990s dropping from 9.8 people out of every  read more..

Lead Removal Debris Removal

Lead-based house paint was commonly used in homes up until the late 1970s, and was particularly usual before the 1950s. The most customary places to find lead-based house paint are places where high strength is needed, like doors, door frames, windows, woodwork, and furniture. Lead-based house paint  read more..

Garbage Cleanup From Wind Storm

FEMA did not approve debris plans that did not identify a DMS or disposal site. As mentioned previously, FEMA is considering revisions to its regulations to incorporate the increased federal share component of the PA Pilot Program, which would require PA applicants to identify DMS and Debris Removal Garbage Cleanup From Wind Storm final dis  read more..

What Is Needed To Be A Crime Scene Technician

Sometimes total electrical isolation is a good thing— and that's the idea behind a power-over-fiber (PoF) communications cable being developed by Sandia engineers. "It's common to isolate communications between systems or devices by using fiber optic cables, but if power is required, Crime Scene Cleanup What Is Needed To Be A Crime Scene Technician   read more..

Lead Paint Abatement And Lead Paint Mitigation In

Lead paint removal, lead paint abatement and lead paint mitigation in New York City Rehabilitation, restoration, and maintenance Lead Paint Removal Lead Paint Abatement And Lead Paint Mitigation In projects frequently address old painted surfaces that require preparation and refinishing. In many cases, old lead-based paint is pre  read more..

FEMA Flood Zones

Is financial assistance available for NFIP policyholders to reduce their overall risk? Yes, FEMA offers five hazard mitigation grant programs. Some grant programs are available only to NFIP policyholders. 105. What is the Repetitive Loss Properties Strategy? The primary objective of the Repetitive L  read more..