Electronic Restoration >> Fire Damage Restoration For Electronics

Figure 11 shows a portion of the metal lead frame strip to which the individual capacitor elements will be attached in the early stages of the capacitor assembly process. The precise dimensions of the lead frame vary from manufacturer to manufacturer, but the function is the same. The leadframe provides a means to process many capacitor elements at the same time to improve Fire Damage Restoration For Electronics efficiency during mass production.

Small dollops of conductive silver adhesive have been placed on the offset metal surfaces of the lead Fire Damage Restoration For Electronics frame in preparation for insertion of the individual capacitor elements. This adhesive will subsequently be cured at elevated temperature to make a low-resistance connection between the leadframe metal and the silverpaint layer of each capacitor element. 

Uniformly-spaced guideholes appear in the leadframe. They exist toaid transport and provide precise positioning during the various manufacturing steps. In Figure 12, one sees capacitor elements electrically connected to the leadframe. The positive connection Fire Damage Restoration For Electronics is made by resistance welding of the anode wire to the leadframe. 

The negative connection is made bycuring the silver adhesive which forms a conductive layer between the leadframe and the silver paint on theelements. The silver adhesive is cured by heating until the epoxy binder cross links. During the curing process, Fire Damage Restoration For Electronics there is some shrinkage which draws the silver particles together and into contact with the surfacesof the leadframe and silver paint. 

The next step is to mold a protective epoxy case around each element. The result appears in Figure 13.The molded epoxy cases have been laser marked and the individual capacitors have been electricallyisolated from each other to facilitate electrical testing. Each capacitor can now be aged Fire Damage Restoration For Electronics and electrically tested. 

These specific capacitors were part of an experiment, Fire Damage Restoration For Electronics and evidence of multiple probe contacts is easily observed on the lower (negative) terminal.One capacitor is missing in Figure 13. This capacitor did not meet specifications and was removed fromthe leadframe strip during electrical testing. 

During high-volume production, sub-standard capacitors arephysically removed to prevent them from being shipped to a customer.After electrical testing, Fire Damage Restoration For Electronics the surviving capacitors are cut from the leadframe strip. The terminal metal thatexits from the molded case is trimmed to a suitable length and is then bent and formed around the bottomedge of the capacitor. 

This step is performed on both terminals and the capacitor is inserted Fire Damage Restoration For Electronics and sealed inside a standardized plastic carrier tape. The carrier tape is designed to feed hundreds or thousands of capacitors to automated equipment that places the capacitors on customers' circuit boards. The capacitorsappear in the carrier tape in Figure 14. 

One capacitor has been removed from the tape and inverted to showits surface mount terminals. Manufacturers of tantalum polymer capacitors often make available to their customers typical electrical performance and reliability data. Occasionally, such data can also be found in technical papers. It can be reasonably assumed that these public data are selected to show the capacitors in a generally favorable light, Fire Damage Restoration For Electronics but nevertheless they provide much useful information. 

In this section, some typical performance datafrom several manufacturers will be presented to give a basic overview of the performance characteristics oftantalum polymer capacitors. Unfortunately, Fire Damage Restoration For Electronics there is considerable variability in the test conditions as well as the format of the availabledata. Moreover, there is no direct overlap of specific part types represented (capacitance and ratedvoltage). 

Thus little competitive information can be gleaned from these data, but much general informationcan be gathered from the various part types and test conditions. In the FY06 continuation project, Fire Damage Restoration For Electronics capacitors of the same part types will be anonymously purchased from a variety of suppliers. Thesecapacitors will be subjected to uniform testing to provide a better understanding of the relative performanceand reliability of several manufacturers' product.

The presently available data will be presented in four categories. The first data category is typical electricalperformance which is intended to highlight the "as manufactured" electrical behavior of tantalum polymer capacitors. The second data category is typical dielectric robustness which Fire Damage Restoration For Electronics is intended to demonstrate thegenerally superior breakdown performance of tantalum polymer capacitors in high inrush currentapplications. 

The third data category is reliability performance which is intended to highlight differences in expected failure rates and distribution of times-to-failure between tantalum polymer capacitors and MnO2-based tantalum capacitors. The last data category is environmental stability which is intended to highlight shifts in electrical performance after initial exposure to environmental Fire Damage Restoration For Electronics and reflow conditions as well as afterlong-term exposure to heat, voltage, and humidity.

Typical Electrical PerformanceThe statistical distribution of 120Hz capacitance among 12 capacitors in a sample of 150µF, 6.3V Vishay Sprague tantalum polymer capacitors appears in Figure 15. These capacitance values are not significantly different Fire Damage Restoration For Electronics from what would be expected for tantalum capacitors manufactured with MnO2 cathode material.The median value of the distribution falls somewhat short of the nominal capacitance value, but all devicesfall within +/-10% limits.

It is not unusual for the median capacitance of tantalum capacitors of all vendors to fall somewhat short ofthe nominal capacitance value. One reason is that almost all efforts to improve device robustness result inreduced capacitance, Fire Damage Restoration For Electronics so the primary focus is often placed on simply exceeding the minimum tolerance limitwhile providing the most robust design. 

Another related reason is that there is no economic incentive to put any more expensive tantalum powder into a design than is absolutely necessary to meet specification limits. 120Hz dissipation factor (DF) data appear in Figure 16 for the same 12 tantalum polymer capacitors whose capacitance appears in Figure 15. Again the Fire Damage Restoration For Electronics data are no different than would be expected for an MnO2-based tantalum capacitor. 

At 120Hz, the dissipation factor is largely governed by dielectric loss rather thancathode conductivity, Fire Damage Restoration For Electronics and the dielectric is the same for both styles of tantalum capacitor. The DF limit forthese capacitors is 12% and it is clear that these devices comfortably comply. The DC leakage current data for the Vishay-Sprague capacitors of Figures 15 and 16 appear in Figure 17.

The leakage values are log-normally distributed and the spread of the distribution is similar to the spread ofDC leakage values for MnO2-based capacitors. However, Fire Damage Restoration For Electronics the median value of leakage is much higher forthese tantalum polymer capacitors than would be normal for MnO2-based tantalum capacitors.

Providing Residential Mitigation Services

For Individuals Providing Residential Mitigation Services). Please check the box to indicate that you have taken and passed EPA's Radon Mitigation Exam. You are required to take and pass the mitigation exam prior to submitting an Radon Mitigation Providing Residential Mitigation Services application to be listed as a residential mitigation se  read more..

How To Remove Asbestos Flooring Adhesive

Workplace exposures at the facility after 1992 were probably much lower than exposures that occurred prior to 1992 because Libby ore was no longer used at the facility after 1992. In 2000, EPA measured 0.0107 structures/cc in Asbestos Abatement How To Remove Asbestos Flooring Adhesive air next to the exfoliation ovens (EPA 2001). 
<  read more..

Asbestos Floor Tiles

Top of Form Asbestos Professionals: Who Are They And What Can They Do? Asbestos professionals are trained in handling Asbestos material. The type of professional will depend on the type of product and Asbestos Abatement Asbestos Floor Tiles what needs to be done to correct the problem. 

  read more..

Flood Management Methods

Stand away from, Flood Damage Flood Management Methods not under,the sag. (Under a doorway is safest.) Poke a hole in the ceiling at the edge of the sag so any trapped water can begin to drain. Do not start at the center of the sag because the ceiling may collapse suddenly.

Rescue the Most Valuable Items Find and pro  read more..

Reinforcing Your Garage Door

Protecting Your Home From Hurricane Wind Damage Figure 6. Double-Wide Garage Doors Certain parts of the country have building codes requiring garage doors to withstand high winds. You should check with your local government building officials to see if there Wind Damage Reinforcing Your Garage Door are code requirements for   read more..

How To Remove Soot From A Painted Mantle

The results showed that when conditions were varied, different materials tested as the most corrosive. While all materials tested had a corrosive effect on the targets, there was not a consistent pattern in the reaction of the steel coupons to the test conditions. Enhancing condensation with ice typ  read more..

How Do I Clean Up After The Finished Basement Floo

Basement and Yard Water Problems
 Each year, the Water Resources Center receives dozens of phone calls and emails from people experiencing problems with unwanted water. Many of the calls start Basement Drying How Do I Clean Up After The Finished Basement Floo with "I think my house is built on a spring”. The symptoms may include w  read more..

Flood Zone

Questions about the Biggert-Waters Flood zone Insurance Reform Act of 2012 1. What is the Biggert-Waters Flood zone Insurance Reform Act of 2012? Answer: The Biggert-Waters Flood Damage Flood Zone Insurance Reform Act of 2012 (BW-12) is a law passed by Congress and signed by the President in 2012 that extends the Nati  read more..

How To Clean Up From A Sewer Backup

Sanitary sewer overflows can be caused by too much precipitation infiltrating leaky sewer pipes, inadequate system capacity to handle newly-developed residential or commercial areas, blocked or broken pipes, or improperly designed and installed sewer systems. Sewage backups not only present unpleasa  read more..

Hot Water Extration From Carpet

Benchmark locations were integrated with gener­alized maps of soils and geology covering parts ofOrleans Parish, which lies at the center of the NewOrleans MSA. It is important to note that the soil andgeology data sets were digitized from small-scale,paper, photocopied maps to test the initial con  read more..