Dehumidification >> Desiccant Vs. Mechanical Dehumidification

System description and operation principle Various low-temperature desalination units have been constructed base on the principle of humidification-dehumidification. The basic principle of all these techniques is to convert salt water to humidified air and Desiccant Vs. Mechanical Dehumidification then condense the water vapor for clean water creation. 

The low-temperature distillation is based on the fact that humidified air at elevated temperatures (60-80 ºC) carries a large amount of water vapor. Water-saturated hot air at 30 ºC and 80 ºC has a water partial pressure of 31.8 mm Hg and 355.1 mm Hg; a large amount of water (~517 g/Kg air) can be condensed as clean water when Desiccant Vs. Mechanical Dehumidification humidified air is cooled from 80 ºC to 30 ºC. 

The difference in water vapor pressure at varied temperatures gives the estimate of water treatment capacity, Desiccant Vs. Mechanical Dehumidification as shown in Figure 2-1. The specific energy consumption of the air-enhanced water distillation includes water heating, evaporation, and mechanical energy for pumping water and blowing air. 

To create 1.0 Kg clean water from produced water, the specific energy requirements for water heating, Desiccant Vs. Mechanical Dehumidification evaporation and the air blower are ~229.9 KJ, 2260 KJ, and 7.9 KJ, respectively [Parekh, et al., 2004]. The large amount of latent heat expected in phase conversion (i.e. water evaporation) is the main cause of the energy intensity of conventional distillation processes. 

One way to lower energy consumption is to reuse the latent heat for water heating and evaporation [Hamieh et al., 2006; Bourouni, et al, 2001]. From the three main parts of this system, Desiccant Vs. Mechanical Dehumidification operation principle would be concluded as: (1) improving external heat equipment for deploying different kind energy at each situation or location.

(2) enhancing energy efficacy of desalination system by increasing humidity efficiency, Desiccant Vs. Mechanical Dehumidification condense capacity or latent heat reuse. 2.2 Objective of study The primary aims of this study are: (1) to conduct experimental studies for the concept of produced water desalination by humidification-dehumidification water distillation process.

To determine the influence of operation parameters on humidification-dehumidification separation performance, (3) to characterize the water production Desiccant Vs. Mechanical Dehumidification and energy efficiency and improve the energy efficacy by using built-in capillary condenser, (4) to investigate the purification application of humidification-dehumidification process in coalbed methane produced water purification. 

Scope of study This research focuses on produced water purification at the wellhead Desiccant Vs. Mechanical Dehumidification and beneficial uses in oil production, i.e., drilling fluid, stimulating fluid, and water flooding. Experiments have been carried out to evaluate the humidification-dehumidification process for produced water desalination. 

First, sequences of desalination test on NaCl solutions were tested for optimization of operating parameters, such as air/water ratio, feed water temperature, and air/water flow rate. Then, Desiccant Vs. Mechanical Dehumidification technologies for enhancing energy efficiency were investigated. Measures undertaken for enhancement in latent heat recovery and energy efficiency include.

Built-in water condensers with different configurations for enhancement of latent heat recovery, Desiccant Vs. Mechanical Dehumidification (2) optimizing process for enhancement of heat/mass transfer, and (3) deployment of renewable energies, including solar energy and coproduced geothermal energy, for driving the water desalination process. 

Finally, produced water desalination by humidification-dehumidification process has been tested. Separation performance including ion removal efficiency Desiccant Vs. Mechanical Dehumidification and impact on organic removal were studied. The produced water humidification-dehumidification purification system consisted of a water heating and delivery system, an evaporation and condensation chamber, and the clean water collection and concentrate water recycle system. 

Both the feed and clean water were collected in a time period and stored at 5 ºC for chemistry analysis. Figure 3-1 shows a schematic diagram of this system. The water heating Desiccant Vs. Mechanical Dehumidification and delivery system includes a cole-parmer temperature bath and a Masterflex pump. Feed water was heated to 60 ºC, 70 ºC or 80 ºC in a water bath. 

When temperature reached a preset value, produced water was introduced into the top of humidification-dehumidification chamber by a Masterflex pump at a fixed flow rate. The feed water drained down through a water distributer to form thin water film. Meanwhile, Desiccant Vs. Mechanical Dehumidification the air supplied by a centrifugal blower moved in a counter direction from the bottom of evaporation chamber to the condensation chamber and further contacted with the water film. 

Humidified air formed during the counter movement of air and water film. The humidified air kept flowing into the condensation chamber and formed condensate upon cooling Desiccant Vs. Mechanical Dehumidification and capillary condensation. Condensate purified water exited from the bottom of humidification-dehumidification chamber to a clean water collection bottle. 

At the same time, Desiccant Vs. Mechanical Dehumidification the concentrated wastewater was circulated through a pipe to the produced water tank. Distilled water was added manually into the feed water to maintain a constant ion concentration during the whole experimental process. Both the feed water and purified clean water were collected every two hours for chemistry analysis. 

The produced water humidification-dehumidification system has the similar structure described by Xiong and coworkers [Xiong, et, al. 2005]. The humidification and dehumidification chambers were constructed by plastic shell and 124 copper tubes. Because of two different humidification-dehumidification column design, Desiccant Vs. Mechanical Dehumidification this produced water desalination experiments were carried out by using two different humidification-dehumidification media. 

The first separation column was built by plastic shell column Desiccant Vs. Mechanical Dehumidification and copper pipes as humidifier and heat exchanger. Figure 3-2 gives the schematic diagram of the copper tubing separation column. Copper tubes with outside diameter of 6.35 mm and length of 1.8 m were bundled and embedded into a plastic column. 

Produced water was directed through a water distributer which was made by 124 microbore tubes with inner diameter of 0.25 mm. On the bottom of the column, there are dry air inlet, Desiccant Vs. Mechanical Dehumidification clean water outlet and concentrated water outlet pipes which connected with produced water tank for feed water circulation. 

Produced water was directed through the water distributer to inner surface of the copper tubes Desiccant Vs. Mechanical Dehumidification and contact with upflowing dry air which was blown from the bottom of the column. Humidified air will be generated during the counter movement of falling water film and up-flowing air streaminside the copper tubes. 

Humidified air stream flow to the condensation chamber and clean water start to condense at the outside walls of the copper tube because of temperature difference between inside and outside wall of the copper tubing. As the condensate is generated, Desiccant Vs. Mechanical Dehumidification large quantity of latent heat will be released and will transport to the inside wall surface of the copper pipes. .

What To Do Immediately After The Fire

What To Do Immediately After the Fire Try to remain calm. Listen carefully to what people are telling you. Tell a Reno Fire Department or REMSA member if you have immediate medical needs. If you cannot live in your home and the structure is safe to enter, a fire department representative will accomp  read more..

How To Keep Moisture Out Of Your Basement

TIPS FOR DRYING OUT A WATER-DAMAGED BUILDING F. Mitchener Wilds, Senior Restoration Specialist
 Once a building has been exposed to a large volume of water, either floodwater or rainwater, steps must be taken to dry the building out, assess damage, and Basement Drying How To Keep Moisture Out Of Your Basement plan for repairs a  read more..

Storm Wind Damage Scale

Area affected by the July 4, 1969 derecho (outlined in blue), with the approximate hourly positions of the leading edge of derecho winds (gust front) indicated by curved purple lines. Arrows indicate direction of storm winds. During the afternoon of Friday, July 4, 1969, Wind Damage Storm Wind Damage Scale thunderstorms  read more..

Flood Damage Restoration For Electronics

The second observation is that the first breakdown for the tantalum polymer capacitors occurs at 1.75 times rated voltage. This is roughly twice as high as the lowest voltage seen for the MnO2-based capacitors.While the precise numerical value of this advantage varies somewhat with manufacturer and   read more..

Flooded Basement

Sanitation & Hygiene in a Flood It is critical for you to remember to practice basic hygiene during the emergency period. Always wash your hands with soap and water that has been boiled or disinfected: before preparing or eating food; after toilet use; Flood Damage Flooded Basement after participating in flood  read more..

Program To Address Mold

Program To Address Mold In Neighborhoods Hardest Hit By Hurricane Sandy Unique Public-Private Partnership to Help Expand Mold Treatment Assistance in Affected Neighborhoods Mayor Michael R. Bloomberg and the Mayor's Office of Housing Recovery Operations today announced a new initiative to address wa  read more..

Toilet Smells Like Sewer Gas

Sanitary Sewer Odor Complaints If you have a sewer odor in your home, first look for the source in the bathrooms, kitchen or basement. Pour a gallon of water down the drains and sinks that are not used often. You can also pour a household disinfectant in all drains. If this does not solve the proble  read more..

Mold Cleanup Procedures

MOLD/WATER DAMAGED MATERIALS Key Engineering Controls and Work Practices Discard all water-damaged materials, materials that are visibly coated with mold that cannot be properly cleaned, such as porous materials (e.g., carpeting, drywall, insulation), Mold Remediation Mold Cleanup Procedures and materials that have been  read more..

Biohazard Clean Up Safety Training

CRIME SCENE CLEAN UP AWARDS GUIDELINE EFFECTIVE 11/1/09 AUTHORITY states allowable expenses include reasonable costs associated with crime scene clean up. 21 O.S. 142.13 Crime Scene Cleanup Biohazard Clean Up Safety Training states that reasonable costs associated with crime scene clean up s  read more..

Drug Laboratory Cleanup

Methamphetamine labs are more than just hazardous and unlawful. They leave a huge mess, and ecological hazard that, according to the law, must be cleaned up. And it takes a special procedure, authorization and inspectors who search the Meth Lab Cleanup Drug Laboratory Cleanup property in full-gear Hazmat suits and bre  read more..