Dehumidification >> Desiccant Vs. Mechanical Dehumidification

System description and operation principle Various low-temperature desalination units have been constructed base on the principle of humidification-dehumidification. The basic principle of all these techniques is to convert salt water to humidified air and Desiccant Vs. Mechanical Dehumidification then condense the water vapor for clean water creation. 

The low-temperature distillation is based on the fact that humidified air at elevated temperatures (60-80 ºC) carries a large amount of water vapor. Water-saturated hot air at 30 ºC and 80 ºC has a water partial pressure of 31.8 mm Hg and 355.1 mm Hg; a large amount of water (~517 g/Kg air) can be condensed as clean water when Desiccant Vs. Mechanical Dehumidification humidified air is cooled from 80 ºC to 30 ºC. 

The difference in water vapor pressure at varied temperatures gives the estimate of water treatment capacity, Desiccant Vs. Mechanical Dehumidification as shown in Figure 2-1. The specific energy consumption of the air-enhanced water distillation includes water heating, evaporation, and mechanical energy for pumping water and blowing air. 

To create 1.0 Kg clean water from produced water, the specific energy requirements for water heating, Desiccant Vs. Mechanical Dehumidification evaporation and the air blower are ~229.9 KJ, 2260 KJ, and 7.9 KJ, respectively [Parekh, et al., 2004]. The large amount of latent heat expected in phase conversion (i.e. water evaporation) is the main cause of the energy intensity of conventional distillation processes. 

One way to lower energy consumption is to reuse the latent heat for water heating and evaporation [Hamieh et al., 2006; Bourouni, et al, 2001]. From the three main parts of this system, Desiccant Vs. Mechanical Dehumidification operation principle would be concluded as: (1) improving external heat equipment for deploying different kind energy at each situation or location.

(2) enhancing energy efficacy of desalination system by increasing humidity efficiency, Desiccant Vs. Mechanical Dehumidification condense capacity or latent heat reuse. 2.2 Objective of study The primary aims of this study are: (1) to conduct experimental studies for the concept of produced water desalination by humidification-dehumidification water distillation process.

To determine the influence of operation parameters on humidification-dehumidification separation performance, (3) to characterize the water production Desiccant Vs. Mechanical Dehumidification and energy efficiency and improve the energy efficacy by using built-in capillary condenser, (4) to investigate the purification application of humidification-dehumidification process in coalbed methane produced water purification. 

Scope of study This research focuses on produced water purification at the wellhead Desiccant Vs. Mechanical Dehumidification and beneficial uses in oil production, i.e., drilling fluid, stimulating fluid, and water flooding. Experiments have been carried out to evaluate the humidification-dehumidification process for produced water desalination. 

First, sequences of desalination test on NaCl solutions were tested for optimization of operating parameters, such as air/water ratio, feed water temperature, and air/water flow rate. Then, Desiccant Vs. Mechanical Dehumidification technologies for enhancing energy efficiency were investigated. Measures undertaken for enhancement in latent heat recovery and energy efficiency include.

Built-in water condensers with different configurations for enhancement of latent heat recovery, Desiccant Vs. Mechanical Dehumidification (2) optimizing process for enhancement of heat/mass transfer, and (3) deployment of renewable energies, including solar energy and coproduced geothermal energy, for driving the water desalination process. 

Finally, produced water desalination by humidification-dehumidification process has been tested. Separation performance including ion removal efficiency Desiccant Vs. Mechanical Dehumidification and impact on organic removal were studied. The produced water humidification-dehumidification purification system consisted of a water heating and delivery system, an evaporation and condensation chamber, and the clean water collection and concentrate water recycle system. 

Both the feed and clean water were collected in a time period and stored at 5 ºC for chemistry analysis. Figure 3-1 shows a schematic diagram of this system. The water heating Desiccant Vs. Mechanical Dehumidification and delivery system includes a cole-parmer temperature bath and a Masterflex pump. Feed water was heated to 60 ºC, 70 ºC or 80 ºC in a water bath. 

When temperature reached a preset value, produced water was introduced into the top of humidification-dehumidification chamber by a Masterflex pump at a fixed flow rate. The feed water drained down through a water distributer to form thin water film. Meanwhile, Desiccant Vs. Mechanical Dehumidification the air supplied by a centrifugal blower moved in a counter direction from the bottom of evaporation chamber to the condensation chamber and further contacted with the water film. 

Humidified air formed during the counter movement of air and water film. The humidified air kept flowing into the condensation chamber and formed condensate upon cooling Desiccant Vs. Mechanical Dehumidification and capillary condensation. Condensate purified water exited from the bottom of humidification-dehumidification chamber to a clean water collection bottle. 

At the same time, Desiccant Vs. Mechanical Dehumidification the concentrated wastewater was circulated through a pipe to the produced water tank. Distilled water was added manually into the feed water to maintain a constant ion concentration during the whole experimental process. Both the feed water and purified clean water were collected every two hours for chemistry analysis. 

The produced water humidification-dehumidification system has the similar structure described by Xiong and coworkers [Xiong, et, al. 2005]. The humidification and dehumidification chambers were constructed by plastic shell and 124 copper tubes. Because of two different humidification-dehumidification column design, Desiccant Vs. Mechanical Dehumidification this produced water desalination experiments were carried out by using two different humidification-dehumidification media. 

The first separation column was built by plastic shell column Desiccant Vs. Mechanical Dehumidification and copper pipes as humidifier and heat exchanger. Figure 3-2 gives the schematic diagram of the copper tubing separation column. Copper tubes with outside diameter of 6.35 mm and length of 1.8 m were bundled and embedded into a plastic column. 

Produced water was directed through a water distributer which was made by 124 microbore tubes with inner diameter of 0.25 mm. On the bottom of the column, there are dry air inlet, Desiccant Vs. Mechanical Dehumidification clean water outlet and concentrated water outlet pipes which connected with produced water tank for feed water circulation. 

Produced water was directed through the water distributer to inner surface of the copper tubes Desiccant Vs. Mechanical Dehumidification and contact with upflowing dry air which was blown from the bottom of the column. Humidified air will be generated during the counter movement of falling water film and up-flowing air streaminside the copper tubes. 

Humidified air stream flow to the condensation chamber and clean water start to condense at the outside walls of the copper tube because of temperature difference between inside and outside wall of the copper tubing. As the condensate is generated, Desiccant Vs. Mechanical Dehumidification large quantity of latent heat will be released and will transport to the inside wall surface of the copper pipes. .

Smoke Damage

I discovered Tenant Move Out Cleanup Smoke Damage after the tenants moved out. Smoke damage does not always have to result from having a fire in your home. My tenants moved out and I did not realize how serious their cigarette smoking addiction was. Upon walking into the rental the smell was obvious and the yellow discolora  read more..

Remove The Smoke Smell From Clothes After A House

The National Institute for Occupational Safety and Health (NIOSH) warns workers and volunteers of the potential dangers involved with cleanup operations following the devastation caused by forest fires. Because the level of experience varies among these workers, cleanup crews must work together and&  read more..

How To Do Paper Water Restoration

At its meeting on July 29, 1999, the State Records Commission approved new records disposition authorities (RDAs) for the ALABAMA ALCOHOLIC BEVERAGE CONTROL BOARD, the HOME BUILDERS' LICENSURE BOARD, and the ALABAMA PEACE OFFICERS' STANDARDS AND TRAINING COMMISSION. Document restoration How To Do Paper Water Restoration

The comm  read more..

Mold Mitigation

If there has been a lot of water damage, and/or mold growth covers more than 10 square feet, consult EPA's Mold Remediation in Schools and Commercial Buildings. Although focused on schools and commercial buildings, this Water Damage Mold Mitigation document is applicable to other building types. If you choose to hire  read more..

How To Keep A Mold Smell Out Of The Crawlspace

The principal perceived advantage of a vented crawl space over an unvented one is that venting may limit radon and moisture-related decay hazards by diluting the crawl space air. Crawl Space Drying How To Keep A Mold Smell Out Of The Crawlspace Additionally, providing a vented crawlspace may make sense in flood-prone areas such as coastal zones subj  read more..

Asbestos Removal

I f you like to work in the field of asbestos abatement the Environmental Protection Agency requires anyone that wants to perform Asbestos Abatement Asbestos Removal, inspection or asbestos repair to pass a training course. The private sector can offer these courses along with state agencies that must meet the requirements  read more..

Naturally Remove Smoke After A Fire

During a fire, soot agglomerations are segregated in the air due to flotation effects, the larger agglomerations dropping out of the air closest to the fire and the finer agglomerations farther from the fire. Soot particles will penetrate the finest crevices of a surface and remain physically trappe  read more..

How To Dehumidify A Flooded Basement Apartment

Other hardware included slide bolts, handles, and weather stripping for the doors. Again, stainless steal would be preferred in any applications that come into close contact with the inside kiln environment. Miscellaneous materials included an exterior grade stain for the kiln siding and paint for t  read more..

Get A Lead Abatement License

You might desire a respirator when,for example, you have received medical advice that your lead absorption should be decreased. Or, you may intend to have children in the near future, and want to reduce the level of lead in your body to minimize adverse Lead Paint Removal Get A Lead Abatement License reproductive effects.    read more..

How To Deal With An Elderly Hoarder

And then there's the odd story of Wolbachia. Most of us, I think, believe that genetics and evolution pretty much predetermine how we will reproduce ourselves. It seems unlikely that we have a choice about whether we procreate by mating with members of the opposite sex (as humans do) or Hoarding How To Deal With An Elderly Hoarder by  read more..