Dehumidification >> Desiccant Vs. Mechanical Dehumidification

System description and operation principle Various low-temperature desalination units have been constructed base on the principle of humidification-dehumidification. The basic principle of all these techniques is to convert salt water to humidified air and Desiccant Vs. Mechanical Dehumidification then condense the water vapor for clean water creation. 

The low-temperature distillation is based on the fact that humidified air at elevated temperatures (60-80 ºC) carries a large amount of water vapor. Water-saturated hot air at 30 ºC and 80 ºC has a water partial pressure of 31.8 mm Hg and 355.1 mm Hg; a large amount of water (~517 g/Kg air) can be condensed as clean water when Desiccant Vs. Mechanical Dehumidification humidified air is cooled from 80 ºC to 30 ºC. 

The difference in water vapor pressure at varied temperatures gives the estimate of water treatment capacity, Desiccant Vs. Mechanical Dehumidification as shown in Figure 2-1. The specific energy consumption of the air-enhanced water distillation includes water heating, evaporation, and mechanical energy for pumping water and blowing air. 

To create 1.0 Kg clean water from produced water, the specific energy requirements for water heating, Desiccant Vs. Mechanical Dehumidification evaporation and the air blower are ~229.9 KJ, 2260 KJ, and 7.9 KJ, respectively [Parekh, et al., 2004]. The large amount of latent heat expected in phase conversion (i.e. water evaporation) is the main cause of the energy intensity of conventional distillation processes. 

One way to lower energy consumption is to reuse the latent heat for water heating and evaporation [Hamieh et al., 2006; Bourouni, et al, 2001]. From the three main parts of this system, Desiccant Vs. Mechanical Dehumidification operation principle would be concluded as: (1) improving external heat equipment for deploying different kind energy at each situation or location.

(2) enhancing energy efficacy of desalination system by increasing humidity efficiency, Desiccant Vs. Mechanical Dehumidification condense capacity or latent heat reuse. 2.2 Objective of study The primary aims of this study are: (1) to conduct experimental studies for the concept of produced water desalination by humidification-dehumidification water distillation process.

To determine the influence of operation parameters on humidification-dehumidification separation performance, (3) to characterize the water production Desiccant Vs. Mechanical Dehumidification and energy efficiency and improve the energy efficacy by using built-in capillary condenser, (4) to investigate the purification application of humidification-dehumidification process in coalbed methane produced water purification. 

Scope of study This research focuses on produced water purification at the wellhead Desiccant Vs. Mechanical Dehumidification and beneficial uses in oil production, i.e., drilling fluid, stimulating fluid, and water flooding. Experiments have been carried out to evaluate the humidification-dehumidification process for produced water desalination. 

First, sequences of desalination test on NaCl solutions were tested for optimization of operating parameters, such as air/water ratio, feed water temperature, and air/water flow rate. Then, Desiccant Vs. Mechanical Dehumidification technologies for enhancing energy efficiency were investigated. Measures undertaken for enhancement in latent heat recovery and energy efficiency include.

Built-in water condensers with different configurations for enhancement of latent heat recovery, Desiccant Vs. Mechanical Dehumidification (2) optimizing process for enhancement of heat/mass transfer, and (3) deployment of renewable energies, including solar energy and coproduced geothermal energy, for driving the water desalination process. 

Finally, produced water desalination by humidification-dehumidification process has been tested. Separation performance including ion removal efficiency Desiccant Vs. Mechanical Dehumidification and impact on organic removal were studied. The produced water humidification-dehumidification purification system consisted of a water heating and delivery system, an evaporation and condensation chamber, and the clean water collection and concentrate water recycle system. 

Both the feed and clean water were collected in a time period and stored at 5 ºC for chemistry analysis. Figure 3-1 shows a schematic diagram of this system. The water heating Desiccant Vs. Mechanical Dehumidification and delivery system includes a cole-parmer temperature bath and a Masterflex pump. Feed water was heated to 60 ºC, 70 ºC or 80 ºC in a water bath. 

When temperature reached a preset value, produced water was introduced into the top of humidification-dehumidification chamber by a Masterflex pump at a fixed flow rate. The feed water drained down through a water distributer to form thin water film. Meanwhile, Desiccant Vs. Mechanical Dehumidification the air supplied by a centrifugal blower moved in a counter direction from the bottom of evaporation chamber to the condensation chamber and further contacted with the water film. 

Humidified air formed during the counter movement of air and water film. The humidified air kept flowing into the condensation chamber and formed condensate upon cooling Desiccant Vs. Mechanical Dehumidification and capillary condensation. Condensate purified water exited from the bottom of humidification-dehumidification chamber to a clean water collection bottle. 

At the same time, Desiccant Vs. Mechanical Dehumidification the concentrated wastewater was circulated through a pipe to the produced water tank. Distilled water was added manually into the feed water to maintain a constant ion concentration during the whole experimental process. Both the feed water and purified clean water were collected every two hours for chemistry analysis. 

The produced water humidification-dehumidification system has the similar structure described by Xiong and coworkers [Xiong, et, al. 2005]. The humidification and dehumidification chambers were constructed by plastic shell and 124 copper tubes. Because of two different humidification-dehumidification column design, Desiccant Vs. Mechanical Dehumidification this produced water desalination experiments were carried out by using two different humidification-dehumidification media. 

The first separation column was built by plastic shell column Desiccant Vs. Mechanical Dehumidification and copper pipes as humidifier and heat exchanger. Figure 3-2 gives the schematic diagram of the copper tubing separation column. Copper tubes with outside diameter of 6.35 mm and length of 1.8 m were bundled and embedded into a plastic column. 

Produced water was directed through a water distributer which was made by 124 microbore tubes with inner diameter of 0.25 mm. On the bottom of the column, there are dry air inlet, Desiccant Vs. Mechanical Dehumidification clean water outlet and concentrated water outlet pipes which connected with produced water tank for feed water circulation. 

Produced water was directed through the water distributer to inner surface of the copper tubes Desiccant Vs. Mechanical Dehumidification and contact with upflowing dry air which was blown from the bottom of the column. Humidified air will be generated during the counter movement of falling water film and up-flowing air streaminside the copper tubes. 

Humidified air stream flow to the condensation chamber and clean water start to condense at the outside walls of the copper tube because of temperature difference between inside and outside wall of the copper tubing. As the condensate is generated, Desiccant Vs. Mechanical Dehumidification large quantity of latent heat will be released and will transport to the inside wall surface of the copper pipes. .

Basic Facts About Bats And Bat Exclusion

Little Brown Bat Did You Know? Bats are the only mammals that can fly. They are insect-eating machines, eating thousands of mosquitoes and other flying insects in a single night. Bats use echolocation (rapid pulses of sound that bounce off an object) to detect and Animal Damage Basic Facts About Bats And Bat Exclusion catch insects.   read more..

Radon Test Kit In Your Home

U.S. EPA National Radon Proficiency Program Handbook July 1996 vii EPA 402-R-95-013 DISCLAIMER This Handbook was prepared by the U.S. Environmental Protection Agency (EPA or Agency). The purpose of this document is to provide applicants to and participants in the Radon Proficiency Program (RPP) with  read more..

Recovering Hurricane Irene

Recovery from Hurricane Irene Steps to take before returning to homes or schoolsChildren, and whenever possible teens, should not be involved in clean-up efforts but can returnonce areas are cleaned. Children should be the last group to return Water Damage Recovering Hurricane Irene to areas impacted by flooding.

  read more..

Electronic Restoration

Smoke damage can cause considerable damage to your homes electronic equipment and your other appliances. It is very important to take immediate, appropriate action. Your Smoke Damage Electronic Restoration carpets, draperies, upholstered furniture and clothing usually could be refurbished   read more..

Lead Paint Poisoning

Lead serves no useful purpose in the body and it can cause serious and permanent health problems. How Does Lead Enter the Body? Lead enters the body by being inhaled or swallowed. Lead can be inhaled when lead dust, mist, or fumes ("smoke") are in the air. Particles of lead can be swallowed if lead   read more..

F5 Tornado Facts

As the cold pool elongates, repetitive storm growth on the downwind-moving, progressive part of the gust front comprises the derecho-producing convective system (red arc in bottom cross section of figure below, and Wind Damage F5 Tornado Facts on right side of plan view inset). 

Meanwh  read more..

How To Keep Animals Out Of Your Attic

Under this alternative ADC would not assist in resolving bird damage problems. Current and potential cooperating facilities would have to withstand Animal Damage How To Keep Animals Out Of Your Attic losses and the risk of disease problems or resort to their own BDM. Their costs for conducting their own BDM would depend on the methods chosen.  read more..

Water Damage Toilet Leak

Repair Your Leaking Toilets: High water bills are often caused by leaking toilets that waste large amounts of water. The diagram below illustrates the parts of a toilet. Most water waste is caused by a leaking flapper or a faulty fill valve that stays open. An open fill valve can have water flowing   read more..

Flat Roof Leak Repair

In addition to the general guidance given in BIA Technical Notes 28 and 28B, the following are recommended:Note: In areas that are also susceptible to high seismic loads, brick veneer should be evaluated by an engineer to ensure it can resist seismic Structural Drying Flat Roof Leak Repair and wind design loads.Stud Spacing  read more..

Water Damage

When dealing with larger Document restoration Water Damage projects additional control measures should be applied for sensitive areas such as patient care, office settings or vivarium areas.  The application of these measures should be made on a case-by-case basis, such as enclose and close off critical areas with p  read more..