Dehumidification >> Do-It-Yourself Flooded Basement Dehumidification

As a result, the heat released by water condensation will compensate water-evaporation provoked temperature decline and enhanced water evaporation. The total heat exchange area of 124 copper tubes in this experiment is 4.5 m2. To enhance the water productivity and heat efficiency, capillary tubing bundles were embedded in the copper tubes Do-It-Yourself Flooded Basement Dehumidification and function as built-in condensers. 

The capillary tubing used here has an inside diameter (ID) of 0.56 mm and outside diameter (OD) of 1.06 mm. Each copper tube contains three built-in capillary tubes, Do-It-Yourself Flooded Basement Dehumidification giving an overall heat exchange surface area of 1.2 m 2 . Figure 3-3 schematically shows the built-in capillary tubing bundle embedded in a copper casing. 

As shown in Figure 3-3, the feeding water formed a thin water film on the external surface of the built-in capillary tubing. Air was forced to flow in the interspacing of capillary tubing in a counter movement by a centrifugal air blower. The up-flowing dry air further contacted with water film, Do-It-Yourself Flooded Basement Dehumidification generating humidified air stream. 

The humidified air was then directed to the interior cavities of capillary tubing and moved downward. In that process, Do-It-Yourself Flooded Basement Dehumidification water condensed at the interior cavities of capillary tubing upon cooling and capillary condensation. The purified produced water was collected at the bottom of air/water outlet. 3.2 Chemicals and equipment Chemicals used in this study include NaCl (ACS, >99%), cation standard (3600 ppm), anion standard (5000 ppm). 

Coal bed methane produced water samples were taken from the local disposal site of San Juan Basin of New Mexico State. The produced water contains 19792.8 mg/L total dissolved solid, 99.6 mg/L total suspended particulates Do-It-Yourself Flooded Basement Dehumidification and 470.2 mg/L total organic carbon. A water bath (17L, Polystat) was used to heat salty water and produced water to desirable temperatures. 

The variable Autotransformer (Type: 3PN1010, Staco Energy Products CO.) and centrifugal blower (Cole-Parmer) were used for water and air delivery. 3.3 Analysis Ion concentration of both feed Do-It-Yourself Flooded Basement Dehumidification and purified water samples were analyzed by ion chromatograph (IC, DX-120, Dionex). All water samples were filtrated by sterilizing filters (0.2 m, Fisher) to remove suspended particulates floating oil. 

Water samples were diluted to desirable concentrations (~50 mg/L) before manually injected into the IC for cation and anion analysis. A dynamic light scattering particle analyzer (Nanotrac NPA 150) was used for Do-It-Yourself Flooded Basement Dehumidification study of particle size distribution of the produced water. Concentrations of dissolved organics were represented by the TOC (Total Organic Carbon) and analyzed by a TOC analyzer (Shimadzu, TOC-V). 

Metal ions Do-It-Yourself Flooded Basement Dehumidification were analyzed by the flame atomic absorption (Varian Model 110). Water productivity of the humidification-dehumidification process was investigated with the two condensers: (1) copper tubing condenser and (2) built-in capillary bundles. Few experiments were carried out to test the performance of these two separation column with different condensers such as productivity, water recovery and heat efficiency. 

Compare with two separation column, the one with high productivity, Do-It-Yourself Flooded Basement Dehumidification high water recovery and high heat efficiency is suitable for oil filed use. 4.1 Copper tubing condenser Water purification by the HD process with copper tubing condenser was tested under certain conditions and water recovery at different operation parameters was investigated. 

The influence of feed water temperature, Do-It-Yourself Flooded Basement Dehumidification flow rate of inlet water and flow rate of inlet air were investigated. (1) The effect of carrying air flow rate test: this group test was made at constant feed water temperature of 80 ºC and flow rate of 20 ml/min . The carrying air flow rate was varied from 1250 LPH (liter per hour) to 1500 LPH and to 2500LPH. 

(2) The effect of feed water temperature test: the flow rate of feed water and carrying air were set at 20 ml/min Do-It-Yourself Flooded Basement Dehumidification and 1250 LPH respectively. Feed water was heated up to 60 ºC, 70 ºC and 80 ºC for three separate tests. The effect of feed water flow rate test: the effect of feed water flow rate test were tested at constant feed water temperature of 80 ºC and carrying air flow rate of 1250 LPH. 

Feed water flow rate was set at 20 ml/min, 27 ml/min and 32 ml/min respectively. 0.1 mol/L NaCl solution was used for all the testes. It was observed that the system needed about 4 hours to warm up. Thus, Do-It-Yourself Flooded Basement Dehumidification the first water sample was collected after starting the test for at least four hours. Then water samples were collected every three hours and water chemistry was analyzed. 

Each separation test was running for over 12 hours at constant room temperature until three consecutive water samples gave the same water recovery: an indication of stabilized operation. Water productivity, Do-It-Yourself Flooded Basement Dehumidification water recovery, ion remove efficiency and organic remove efficiency are four general parameters to test the quality of the water purify unit. 

Water productivity (WP) is defined by following equation, Do-It-Yourself Flooded Basement Dehumidification where Qw is the amount of water collected from a dehumidifier in the time period ∆t, which Qw and ∆t are expressed as kg and hour respectively. A is the effective humidification dehumidification area, m2 . In copper tube condenser test, the area is 4.5 m2 , which is the overall heat exchange surface area of the unit. 

Water recovery is defined as the ratio of purified water quantity to feed water quantity. Figure 4-1, 4-2 and 4-3 show the effects of operation parameters on water productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery. Figure 4-1 reveals the influence of carrying air flow rate on water productivity and water recovery at feed water temperature of 80 ºC and flow rate of 20 ml/min. 

The purified water productivity decreased from 0.0194 kg/(h.m2 ) to 0.0159 kg/(h.m2 ) with carrying air flow rate increasing from 1250 LPH to 2500 LPH. Water recovery decreased from 7.3% to 6.0%. The productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery decreasing is explained by large amount of cool carrying air entering the system. 

Dry carrying air was driven into the separator column at room temperature (25 ºC) which is remarkable different from feed water temperature (80 ºC). As the feed water mix with cool air, the temperature of the system decreased, Do-It-Yourself Flooded Basement Dehumidification resulting in a decline of water evaporation. Also, increasing dry air flow rate decreased the humidity at the top of humidifier which resulted in a decline in water productivity. 

Figure 4-2 and Figure 4-3 give the water productivity as a function of feed water temperature Do-It-Yourself Flooded Basement Dehumidification and flow rate. The decline of water recovery with increase of feed water flow rate suggests that the efficiency of productivity decreased with increase of feed water flow rate.

Lead Paint Abatement

Are the employer acts pursuant to a final medical determination which permits the return of the employee to his or her former job status despite what would otherwise be an unacceptable blood lead level, later questions concerning removing the Lead Paint Removal Lead Paint Abatement employee again shall be decided by a final  read more..

Water Damage Electronic Restoration Classes

When candidate plug or receptacle D-subminiature, microminiature or printed circuit connectors are submitted for qualification, completely assembled mated pairs shall be used. Connectors shall have a full complement of contacts. For Level 1 qualification, three mated pairs shall be prepared. For Lev  read more..

Clean Up Raw Sewage Carefully

This handbook has been prepared by the City of LaSalle to explain the causes of sewer backups that occur in the Sewage Cleanup Clean Up Raw Sewage Carefully City during sever rainstorms and to describe steps that are available to homeowners to prevent backups and to protect the contents of their house. 

  read more..

The Best Way To Fix A Wet Basement

Like relocation, demolition is very disruptive for the occupants of the house. Unless you decide to buy an existing house elsewhere, you must find a place to live and to store your furniture and Basement Drying The Best Way To Fix A Wet Basement belongings while your new house is being built. 

  read more..

How To Conserve And Restore Old Paper

Few commercially available adhesives meet these criteria. Commercial library and wallpaper pastes may lose hold as they age, and they often contain harmful additives. Rubber cement and Document restoration How To Conserve And Restore Old Paper animal glues darken and stain. 

Several synthetic adhesives, such as "wh  read more..

Professional Water Damage Carpet Cleaning

In the wake of Hurricane Isaac's recent recovery efforts, Louisiana's restoration from Hurricane Rita persists, enabled by approximately$1.3 billion in Federal Emergency Management Agency public assistance, hazard mitigation Water Extraction Professional Water Damage Carpet Cleaning and individual assistance funding since her landfall on Sept  read more..

Sewer Backup Caused Black Mold

The Community Folk Art Center, 805 E. Genesee St., will remain closed this week as officials continue to clean up. Water leaked through the ceiling and the sewer backed up, said Kevin Leonardi, its marketing specialist. Staff members quickly moved art and equipment to safety, but repairs were n  read more..

Samples Taken By Lead Paint Workers

Samples for dry manual sanding were taken at three different work sites; at each site, three samples were taken on an individual worker while he or she worked on one visually uniform paint surface. A distribution of potential full-shift exposures was modeled for work at each work site. It was assume  read more..

Flood Damage

Standardization of aeration rate, which took place through unoccupied episodes, active carbon dioxide observed by a Beckman LB-2 Infrared Analyzer, degree of deterioration of a known quantity, generally 1% indicated aeration rate.
Chief Odor Control Flood Damage factors involved three levels of < r *6 ^- 5  read more..

Basement Drying

When a Fire Damage Basement Drying strikes, many lives could be suddenly turned upside down, many times the hardest part is knowing exactly where to start and who you should contact. The Federal Emergency Management Agency’s (FEMA) along with the United States Fire Administration (USFA) has collected the foll  read more..