Dehumidification >> Do-It-Yourself Flooded Basement Dehumidification

As a result, the heat released by water condensation will compensate water-evaporation provoked temperature decline and enhanced water evaporation. The total heat exchange area of 124 copper tubes in this experiment is 4.5 m2. To enhance the water productivity and heat efficiency, capillary tubing bundles were embedded in the copper tubes Do-It-Yourself Flooded Basement Dehumidification and function as built-in condensers. 

The capillary tubing used here has an inside diameter (ID) of 0.56 mm and outside diameter (OD) of 1.06 mm. Each copper tube contains three built-in capillary tubes, Do-It-Yourself Flooded Basement Dehumidification giving an overall heat exchange surface area of 1.2 m 2 . Figure 3-3 schematically shows the built-in capillary tubing bundle embedded in a copper casing. 

As shown in Figure 3-3, the feeding water formed a thin water film on the external surface of the built-in capillary tubing. Air was forced to flow in the interspacing of capillary tubing in a counter movement by a centrifugal air blower. The up-flowing dry air further contacted with water film, Do-It-Yourself Flooded Basement Dehumidification generating humidified air stream. 

The humidified air was then directed to the interior cavities of capillary tubing and moved downward. In that process, Do-It-Yourself Flooded Basement Dehumidification water condensed at the interior cavities of capillary tubing upon cooling and capillary condensation. The purified produced water was collected at the bottom of air/water outlet. 3.2 Chemicals and equipment Chemicals used in this study include NaCl (ACS, >99%), cation standard (3600 ppm), anion standard (5000 ppm). 

Coal bed methane produced water samples were taken from the local disposal site of San Juan Basin of New Mexico State. The produced water contains 19792.8 mg/L total dissolved solid, 99.6 mg/L total suspended particulates Do-It-Yourself Flooded Basement Dehumidification and 470.2 mg/L total organic carbon. A water bath (17L, Polystat) was used to heat salty water and produced water to desirable temperatures. 

The variable Autotransformer (Type: 3PN1010, Staco Energy Products CO.) and centrifugal blower (Cole-Parmer) were used for water and air delivery. 3.3 Analysis Ion concentration of both feed Do-It-Yourself Flooded Basement Dehumidification and purified water samples were analyzed by ion chromatograph (IC, DX-120, Dionex). All water samples were filtrated by sterilizing filters (0.2 m, Fisher) to remove suspended particulates floating oil. 

Water samples were diluted to desirable concentrations (~50 mg/L) before manually injected into the IC for cation and anion analysis. A dynamic light scattering particle analyzer (Nanotrac NPA 150) was used for Do-It-Yourself Flooded Basement Dehumidification study of particle size distribution of the produced water. Concentrations of dissolved organics were represented by the TOC (Total Organic Carbon) and analyzed by a TOC analyzer (Shimadzu, TOC-V). 

Metal ions Do-It-Yourself Flooded Basement Dehumidification were analyzed by the flame atomic absorption (Varian Model 110). Water productivity of the humidification-dehumidification process was investigated with the two condensers: (1) copper tubing condenser and (2) built-in capillary bundles. Few experiments were carried out to test the performance of these two separation column with different condensers such as productivity, water recovery and heat efficiency. 

Compare with two separation column, the one with high productivity, Do-It-Yourself Flooded Basement Dehumidification high water recovery and high heat efficiency is suitable for oil filed use. 4.1 Copper tubing condenser Water purification by the HD process with copper tubing condenser was tested under certain conditions and water recovery at different operation parameters was investigated. 

The influence of feed water temperature, Do-It-Yourself Flooded Basement Dehumidification flow rate of inlet water and flow rate of inlet air were investigated. (1) The effect of carrying air flow rate test: this group test was made at constant feed water temperature of 80 ºC and flow rate of 20 ml/min . The carrying air flow rate was varied from 1250 LPH (liter per hour) to 1500 LPH and to 2500LPH. 

(2) The effect of feed water temperature test: the flow rate of feed water and carrying air were set at 20 ml/min Do-It-Yourself Flooded Basement Dehumidification and 1250 LPH respectively. Feed water was heated up to 60 ºC, 70 ºC and 80 ºC for three separate tests. The effect of feed water flow rate test: the effect of feed water flow rate test were tested at constant feed water temperature of 80 ºC and carrying air flow rate of 1250 LPH. 

Feed water flow rate was set at 20 ml/min, 27 ml/min and 32 ml/min respectively. 0.1 mol/L NaCl solution was used for all the testes. It was observed that the system needed about 4 hours to warm up. Thus, Do-It-Yourself Flooded Basement Dehumidification the first water sample was collected after starting the test for at least four hours. Then water samples were collected every three hours and water chemistry was analyzed. 

Each separation test was running for over 12 hours at constant room temperature until three consecutive water samples gave the same water recovery: an indication of stabilized operation. Water productivity, Do-It-Yourself Flooded Basement Dehumidification water recovery, ion remove efficiency and organic remove efficiency are four general parameters to test the quality of the water purify unit. 

Water productivity (WP) is defined by following equation, Do-It-Yourself Flooded Basement Dehumidification where Qw is the amount of water collected from a dehumidifier in the time period ∆t, which Qw and ∆t are expressed as kg and hour respectively. A is the effective humidification dehumidification area, m2 . In copper tube condenser test, the area is 4.5 m2 , which is the overall heat exchange surface area of the unit. 

Water recovery is defined as the ratio of purified water quantity to feed water quantity. Figure 4-1, 4-2 and 4-3 show the effects of operation parameters on water productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery. Figure 4-1 reveals the influence of carrying air flow rate on water productivity and water recovery at feed water temperature of 80 ºC and flow rate of 20 ml/min. 

The purified water productivity decreased from 0.0194 kg/(h.m2 ) to 0.0159 kg/(h.m2 ) with carrying air flow rate increasing from 1250 LPH to 2500 LPH. Water recovery decreased from 7.3% to 6.0%. The productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery decreasing is explained by large amount of cool carrying air entering the system. 

Dry carrying air was driven into the separator column at room temperature (25 ºC) which is remarkable different from feed water temperature (80 ºC). As the feed water mix with cool air, the temperature of the system decreased, Do-It-Yourself Flooded Basement Dehumidification resulting in a decline of water evaporation. Also, increasing dry air flow rate decreased the humidity at the top of humidifier which resulted in a decline in water productivity. 

Figure 4-2 and Figure 4-3 give the water productivity as a function of feed water temperature Do-It-Yourself Flooded Basement Dehumidification and flow rate. The decline of water recovery with increase of feed water flow rate suggests that the efficiency of productivity decreased with increase of feed water flow rate.

Tenant Screening

If the tenant decides to move during the term of the lease, the tenant is usually still responsible for therent for the rest of the lease period, unless the dwelling can be rerented earlier. The landlord isresponsible to make a good faith effort to re-rent the property, and may not charge the origin  read more..

How To Clean Water Damaged Electronic Circuits

Crystals shall be swept synthetic quartz, meeting the infrared quality requirements of grade A or B of Synthetic Quartz Crystal  Specifications and Guide to the Use, IEC 60758 (1993-04), International Electrotechnical Commission, Geneva, Switzerland. Crystals shall be mounted with at least a th  read more..

How To Begin To Declutter A Hoarding Situation

Too much clutter and dirt in your home can cause germs, pests, and contaminants to collect, which can make your family sick. A dirty home can put your family at risk for poisonings and injuries, and can cause health problems like asthma."Keeping a home clean includes controlling the source, creating  read more..

Mold Spores

Mold Basics The key to mold control is moisture control. If mold is a problem in your home, you should clean up the mold promptly and fix the water problem. It is important to dry water-damaged areas and items within 24-48 hours to prevent mold growth. Why is mold growing in my home? Mold c  read more..

Dispose Of Lead Paint Chips

The permissible exposure limit(PEL) set by the standard is 50 micrograms of lead per cubic meter of air (50 µg/m3), averaged over an 8-hour workday. E. Action level: The interim final standard establishes an action level of 30 micrograms of lead per cubic meter of air(30 µg/m3), averaged   read more..

How To Clean Smoke Damaged Electronic Circuits

Fiber termination and handling techniques greatly influence fiber optic system reliability.Missing or ineffective process controls can lead to failure. The user can easily introduce defects due to the mechanical limitations of optical cable. It is therefore critical for the to user institute proper   read more..

Water Structural Drying

What is needed to thoroughly extract the adulteration and repair the damage? Shall the entire edifice or a portion of the edifice be evacuated and, if so, for how long? Could semi porous materials be sanitized, or shall they be replaced? What are the costs of using inadequate measures to extr  read more..

Debris Removal

In this first step, a person needs to consider the likelihood of earthquake existence, extent of the earthquake, the likelihood of fire start after the earthquake and the extent of the ignited Smoke Damage Debris Removal. An earthquake is a natural danger and which might be examined by the statistics-based method.   read more..

Solutions For A Building In A Flood Zone

During a ceremony today at Anderson University, the U.S. Environmental Protection Agency (EPA) announced a $60,000 award to Upstate Forever to help restore the Rocky River and its associated wetlands in Anderson, S.C., support community revitalization and Flood Damage Solutions For A Building In A Flood Zone protect public health.

  read more..

Water Restoration

I've been a local Crawl Space Drying Water Restoration for 17 years and in the area of the country that I work there are many mobile homes and many prefab houses that have crawlspaces. I have seen every kind of water damage from a burst pipe, to a leaking condensation line and leaking water heaters. I have seen minor cases   read more..