Dehumidification >> How To Dehumidify Your Water Damaged Home

Figure 2 shows a picture of the experimental system. The evaporator and condenser chambers are How To Dehumidify Your Water Damaged Home shown in the center of the picture. Both are wrapped with black polyethylene foam insulation to prevent heat transfer to or from the ambient environment. The air and water piping is also covered with the same insulation. 

To measure the various thermal/fluid parameters during testing the experimental system is fully instrumented. Thermocouples installed at both the inlets and outlets of How To Dehumidify Your Water Damaged Home the evaporator and condenser measure the corresponding inlet and outlet temperatures of air and water. A computer-based data-acquisition system automatically records the thermocouple readings. Saltwater and freshwater flow rates are measured using two rotameters. 

Air velocity in the pipe upstream of the evaporator is measured using a hot-wire thermo-anemometer. Heating power of How To Dehumidify Your Water Damaged Home the cartridge heaters is measured using a precision power meter. Freshwater production is determined by collecting the freshwater overflow through the storage-tanks drain for a period of time and dividing the volume of the collected water by the time period. In use the components of the experimental system are first set to the desired testing constraints. 

The system is then allowed to reach a steady state where thermal and fluid-flow parameters no longer vary with time. Once the entire system has reached a steady state, How To Dehumidify Your Water Damaged Home readings are computer recorded at 5-second intervals from the thermocouples for, depending on freshwater-production rates, 20 to 40 minutes. Readings from the anemometer, power meter, and rotameters are manually recorded. During the steady-state measurement period freshwater production is collected and, at the conclusion of the test period, its volume is measured and recorded. 

Principal Findings and Significance This experimental study focuses on parametric trends in the freshwater-production rate, How To Dehumidify Your Water Damaged Home i.e., how the production rate of freshwater is affected by changes in the various thermal/fluid parameters. We are particularly interested in how the freshwater-production rate is affected by the heat input to the saltwater held in the storage tank. Experimental results from this study are summarized in Figure 3 which plots the freshwater production rate, in gallons per hour (GPH), as a function of the heater power (in kW) input to the saltwater.

 Three heating-power input levels are tested: 2.65, 3.60, and 4.45 kW. Figure 3 shows that the freshwater-production rate increases with increasing heater-power input. This implies that increased solar-radiation capture will lead to How To Dehumidify Your Water Damaged Home higher freshwater production rates in actual solar-energy-driven desalination systems. Figure 3 further reveals that the relationship between the freshwater-production rate and the heater-power input is fairly linear. To explore the freshwater-production rate per unit of power input the ratio of the freshwater-production rate to the heater-power input is plotted in Figure 4 as a function of the heater-power input.

 The ratio is fairly constant with an average value of 0.348 GPH/kW, How To Dehumidify Your Water Damaged Home which means that for 1 kW of heating-power input the present experimental system is able to produce 0.348 gallon of freshwater per 1 hour. The Oahu solar map is examined to explore the estimated freshwater-production rates if the present lab-scale experimental system is operated outdoors and driven by solar energy. 

The result is shown in Figure 5. The Ewa plain on the west side of Oahu is selected as the site of study due to its potential freshwater shortage and How To Dehumidify Your Water Damaged Home expected population growth. Figure 5 shows that with 1 square meter of land on the Ewa plain used for solar-energy collection the present experimental system is able to produce 2.02 gallons of freshwater per day. Figure 5. Estimated freshwater-production rate is the experimental system is operating at the Oahu Island Ewa plain.

 The present experimental study also reveals that while the freshwater-production rate decreases slightly with decreasing air velocity it is not sensitive to variations in the saltwater and freshwater flow rates. In summary, How To Dehumidify Your Water Damaged Home a HDH seawater desalination lab-scale experimental system is designed, constructed, and tested to prove the concept of the desalination technique. The testing system is able to deliver stable and highly repeatable freshwater production for long-term operations. 

Results from testing runs indicate that among the many operating parameters the system performance is How To Dehumidify Your Water Damaged Home most affected by the heat input to the saltwater. The knowledge we gained through this project can readily be applied towards developing industrial-scale desalination systems. Desalination produces freshwater by removing dissolved minerals from seawater. The process has a long history as an effective means to meet agricultural, domestic, and industrial freshwater needs in coastal areas. 

Technologically mature conventional desalination processes that have been widely used to produce freshwater at industrial-scale include multi-effect distillation, How To Dehumidify Your Water Damaged Home multi-stage flashing, and reverse osmosis. Multi-effect distillation and multi-stage flashing are based on liquid-vapor phase-change processes where seawater evaporates to water vapor either at atmospheric pressure by adding heat (multi-effect distillation) or at greatly reduced pressure by lowering waters boiling point (multi-stage flashing). 

This water vapor then condenses to yield freshwater—leaving any previously dissolved minerals as waste byproducts. Reverse osmosis, How To Dehumidify Your Water Damaged Home alternatively, is based on membrane technology. Using a high-pressure pump, seawater is forced to flow through a membrane. The membrane only allows freshwater to pass while filtering out the dissolved minerals. Freshwater is produced as a result of this filtering with any previously dissolved minerals retained on the input side of the filter.

 The primary restriction on the use of conventional multi-effect distillation, multi-stage flashing, How To Dehumidify Your Water Damaged Home and reverse-osmosis technologies is that they are highly energy intensive. The cost of freshwater produced by these three desalination technologies is directly dependent upon the cost of energy, primarily electricity and/or high-grade (high-temperature) thermal energy. While these technologies may be considered cost-effective in regions, such as the Middle East, having abundant and economical local petrochemical energy supplies they are not well suited to regions such as Hawaii because of the high energy cost. 

The primary energy source used in Hawaii has long been unrefined oil shipped in from Southeast Asia. Additionally, How To Dehumidify Your Water Damaged Home these three conventional technologies operate under specialized temperature or pressure conditions, e.g., multi-effect distillation requires working temperatures above 100°C, multi-stage flashing requires greatly reduced pressures, and reverse osmosis requires high initial flow pressures and produces a significant reduction of these flow pressures. All of these technological requirements lead to high infrastructure and operating costs.

Government Grants For Homeowners With Mold

The containment area must be maintained under negative pressure relative to surrounding areas. This will ensure that contaminated air does not flow into adjacent areas. This can be done with a HEPA-filtered fan unit exhausted outside of the building. For small, easily contained areas, Mold Remediation Government Grants For Homeowners With Mold   read more..

Water Extraction Equipment For Upholstery Cleaning

FEMA Grant Helps Restore New Orleans' Katrina-Damaged Archives Release date: FEBRUARY 3, 2012 Release Number:1603-963 NEW ORLEANS, La. 

The Federal Emergency Management Agency announced today approximately $1.7 million in public assistance funding to restore New Orle  read more..

How And Where Hurricanes Are Formed

Florida, South Carolina, and Hawaii together offer an illustrative example of residential construction styles and techniques common in hurricane hazard areas. 

In Florida, the most popular type of home building is slab-on-grade foundation with concrete block walls an  read more..

How To Clean Sewer Discharge In Basements

CLEANING UP THE MESS.....After the Flood or Sewage Backup If you have a sewer backup in your house, Sewage Cleanup How To Clean Sewer Discharge In Basements you MUST clean properly to prevent you and your family from becoming sick or injured. Do Not bring children into the flooded area during clean-up! The following are suggestions on how to cleanup   read more..

How To Remove Asbestos Paint From A Ceiling

Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely in homogeneous Asbestos Abatement How To Remove Asbestos Paint From A Ceiling samples. 

  read more..

Homeowner Asbestos Removal

Additional monitoring. Notwithstanding the provisions of paragraphs (d)(2)(ii) and (d)(4) of this section, the employer shall institute the exposure monitoring required under paragraphs (d)(2)(i) and (d)(3) of this section whenever there has been a change in the production, process, control &nb  read more..

Basement Drying

Once you are satisfied that the logic board is cleaned and contacts also are cleaned, you may use the hairdryer on its coldest setting and dry the logic board. You may also want to place the Electronic Restoration Basement Drying device under a lamp, such as a desk lamp, to gently warm and further dry the cleaning fluid. You c  read more..

Frozen Pipe Burst Prevention

Cold Weather TipsGuard Against Cold DraftsSince most water meters and pipes are located in unheated areas, they are vulnerable when temperatures dip below freezing. Even a small draft of cold air through a cracked basement window, Water Damage Frozen Pipe Burst Prevention foundation or sill during extremely cold periods could  read more..

How To Remove A Fire Smoke Smell From Furniture

Guidance on protecting workers in offices and similar indoor workplaces from wildfire smoke has been developed by the California Division of Occupational Safety and Health (Cal/OSHA), in consultation with technical staff from several other California agencies. This document (attached as Appendi  read more..

Fire Restoration

The following article will present strategies to respond to water damaged Document restoration Fire Restoration. These articles are written to help evade the need for mold remediation by taking quick action before mold growth begins. It is imperative that water-impacted documents be dried and/or removed as soon as possible af  read more..